Misurazione dell’effetto di trascinamento dei sistemi inerziali

LARES (acronimo di LAser RElativity Satellite) è un satellite dedicato allo studio e alla conferma della teoria della Relatività Generale formulata da Albert Einstein. Lo scopo principale della missione LARES è la misura di precisione dell’effetto di trascinamento dei sistemi inerziali (frame-dragging), generato da correnti di massa-energia come la rotazione di un corpo dotato di massa, previsto dalla teoria della Relatività Generale.

L’effetto di frame-dragging è particolarmente importante in ambito astrofisico per la descrizione dei fenomeni che avvengono nelle vicinanze di alcuni oggetti come buchi neri supermassivi rotanti, e per i modelli che descrivono la generazione di onde gravitazionali durante la collisione di buchi neri rotanti e stelle di neutroni rotanti. Il frame-dragging nel Sistema Solare è però un effetto molto debole ed una misura diretta risulta particolarmente impegnativa. La missione LARES misura il frame-dragging dovuto alla rotazione della Terra, utilizzando tecniche particolari per estrarre il segnale dell’effetto relativistico dalle perturbazioni dovute agli effetti non relativistici.

Oltre che per misure di relatività generale, i dati dell’orbita di LARES vengono utilizzati anche per misure di geodesia spaziale, geofisica e per lo studio dei cambiamenti climatici.

Il satellite 

Il satellite LARES è stato progettato per ridurre al minimo gli errori di misura sull'orbita del satellite dovuti a perturbazioni non gravitazionali e si avvale dei modelli più aggiornati del campo gravitazionale terrestre per estrarre il debole segnale dovuto agli effetti relativistici.

LARES è un satellite sferico, ricavato da un singolo blocco di lega di tungsteno ad alta densità: pur avendo un diametro di circa 36 cm di diametro, il satellite pesa circa 387 kg. In questo modo la sezione del satellite offre la superficie minore possibile, per ridurre gli effetti della pressione di radiazione, quella solare e quella emessa dalla Terra (albedo), della resistenza atmosferica (minima, ma ancora presente sull'orbita di LARES) e per ridurre le perturbazioni dovute ad effetti di anisotropia termica sul satellite come l’effetto Yarkovski.

Sulla superficie della sfera sono alloggiati 92 retroriflettori a spigolo di cubo, che riflettono gli impulsi laser inviati dalle stazioni dell’International Laser Ranging Service (tra cui il centro di Geodesia Spaziale dell’ASI di Matera), permettendo di misurare la posizione del satellite con una precisione di meno di un centimetro e di ricostruirne quindi l’orbita con estrema accuratezza. Anche tutte le viti e gli anelli metallici del sistema di montaggio dei retroriflettori sono realizzati con la stessa lega di tungsteno del corpo del satellite. LARES è completamente passivo, non è dotato di antenne, motori od altri dispositivi, e rimarrà un “bersaglio” per misure di laser-ranging a tempo indeterminato.

Il lancio

LARES è stato lanciato dallo spazioporto europeo di Kourou in Guyana Francese il 13 febbraio 2012, in occasione del primo volo del lanciatore VEGA, di cui era il payload principale. VEGA ha immesso con grandissima precisione LARES su un'orbita circolare, a circa 1450 km di altitudine e con una inclinazione di 69.5°.

Stato della missione

Per quanto riguarda l’obiettivo principale della missione LARES, ovvero la misura dell’effetto di trascinamento dei sistemi inerziali, nel 2016 il team scientifico ha pubblicato una misura con una accuratezza di circa il 5%, migliorando le precedenti misure che ferme a circa il 10%. Mediando i dati su un periodo ancora più lungo, per eliminare gli errori dovuti principalmente ad effetti mareali con periodicità di alcuni anni ed altri effetti periodici, si prevede di ottenere una misura con una accuratezza del 2%. Per ottenere le misure di relatività, i dati di LARES vengono integrati con quelli provenienti dai satelliti LAGEOS (NASA) e LAGEOS 2, e con i modelli del campo gravitazionale terrestre forniti dalla missione GRACE (DLR-NASA) e in futuro dalla missione GRACE-Follow On (DLR-NASA).

La missione avrà un seguito con LARES 2, una versione perfezionata del satellite, che permetterà di effettuare misurazioni più accurate, anche nel campo della geodesia. LARES 2, la cui partenza è prevista nel 2020, sarà lanciato con il volo inaugurale del vettore VEGA-C.

Contributo italiano

LARES è una missione interamente dell’Agenzia Spaziale Italiana. Il Principal Investigator è il prof. Ignazio Ciufolini (Dipartimento di Ingegneria dell’Innovazione, Università del Salento); il satellite è stato progettato presso la Scuola di Ingegneria Aerospaziale di Sapienza Università di Roma e realizzato, insieme al resto dei sottosistemi ausiliari, dal prime contractor Carlo Gavazzi Space, oggi OHB-Italia. La missione si avvale di una collaborazione con team scientifici internazionali, in particolare per l’analisi dei dati.

‣ News

GIOVEDÌ 03 DICEMBRE 2020

ROSE-L, siglato il contratto tra Thales Alenia Space ed ESA ‣

Il satellite verrà utilizzato per il monitoraggio del territorio e per i servizi di gestione delle emergenze e di ottimizzazione della missione Sentinel-1 MORE...

VENERDÌ 13 NOVEMBRE 2020

La Terra dallo spazio sotto la lente europea ‣

L’ESA sigla tre contratti per lo sviluppo delle missioni ambientali del programma europeo Copernicus. L’Italia con Thales Alenia Space avrà un ruolo di primo piano nello sviluppo di CIMR MORE...

LUNEDÌ 31 AGOSTO 2020

Saocom 1B è in orbita ‣

Il satellite  argentino è stato posizionato in orbita polare dal Falcon 9 di SpaceX MORE...

VENERDÌ 12 GIUGNO 2020

Il satellite COSMO-SkyMed di Seconda Generazione acquisisce simultaneamente immagini su aree distanti centinaia di chilometri ‣

Un’innovazione unica al mondo diventa una realtà al servizio degli Utenti MORE...

MERCOLEDÌ 20 MAGGIO 2020

La Missione prisma apre al pieno utilizzo della comunità ‣

Tutto pronto per avviare lo sfruttamento dei dati della missione PRISMA dell’Agenzia Spaziale Italiana da parte della comunità utente. MORE...