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ComeOnBoardPSG! “Computazione autonoma con machine learning on-board per ottimizzazione
acquisizionene analisi real-time dei dati iperspettrali su PRISMA Secoda Generazione”

ComeOnBoardPSG! is a project developed at the School of Aerospace Engineering of the University of Rome “La
Sapienza”.

The proposal of this project responds to the ASI call for abstracts "Design and development of modules for on-board
computing based on machine learning enabling new remote sensing missions with hyperspectral payloads.” and it is
co-funded by the Italian Space Agency (ASI).
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1) Optimization of acquisitions through real-time evaluation of cloud cover
(a) High impact solution with an additional forward-looking RGB camera onboard PSG
The onboard ML algorithm will provide the cloud cover (%) using the forward-looking camera’s RGB
acquisitions. This information can be used in two distinct ways:
• Selective Acquisition: real-time attitude adjustments are not possible, the onboard system processes the

preplanned acquisition schedule and identifies targets that will likely be obscured by high cloud cover.
• Adaptive Attitude Planning: If the Guidance Navigation and Control (GNC) system has the capability,

the satellite’s attitude can be adjusted in real-time to optimize image acquisition.

(b) Low impact solution without an additional forward-looking RGB camera
Cloud cover can not be predicted before HS data acquisition. A low-impact, non-intrusive module assesses
the cloud cover in each PSG hyperspectral image in real-time.

2) Generation of real-time alerts concerning natural disasters, specifically
referring to wildfires
Integrating a computing board within the PSG that features an onboard neural network (NN) specifically
trained to perform real-time analysis of PRISMA HS images for detecting high temperature events, such
as wildfire and volcanic eruptions.
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Dataset for Wildfire Detection

Hyperspectral Wildfire Detection: Neural Network Training and Performance Analysis

• Starting from the Landsat-8 training dataset, the images were resized to 128×128 pixels, resulting in a total of 161
image patches. This resizing process effectively increased the dataset's diversity.

• The dataset was then divided into:
 Training set (70%) further split into: 90% for actual training and 10% for validation
 Testing set (30%)

ComeOnBoardPSG!

• Transfer learning tested on 14 patches of
128x128 pixels from PRISMA
hyperspectral images acquired over
wildfires in Australia and Oregon.

• Wildfire scenario into seven classes: Fire,
Smoke, Burned Area, Vegetation, Bare Soil,
Water, and Cloud

Australia 27 December 2019 Oregon 5 August 2021

Considering only 
pixels classified as 
active fire for the 
performed binary 
classification 
“fire” or “not 
fire”.
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Algorithms Implementation and Training

Hyperspectral Wildfire Detection

• U-Net neural architecture is considered for the wildfire detection task on the hyperspectral images captured
by PSG’s primary payload.

• Input size of the network has been selected according to the chosen PRISMA hyperspectral bands to enable
efficient onboard wildfire detection.

• Specifically, the input will be adapted to exploit the following hyperspectral bands:
 Blue (450–510 nm)
 Green (530–590 nm)
 SWIR1 (1570–1650 nm)
 SWIR2 (2110–2293 nm)

ComeOnBoardPSG!
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Algorithms Implementation and Training

U-Net Architecture Overview
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• Encoder Structure: three blocks, each containing:
 Two Conv2D layers (ReLU activation, same padding).
 One max pooling layer.
 Feature maps: [n, n, 2n, 2n, 4n, 4n] (where n is the number of filters).

• Bottleneck Layer:
 Two Conv2D layers (8n filters, ReLU activation).
 Dropout layer to reduce overfitting.

• Decoder Structure: mirrors the encoder with:
 Transposed convolution (Conv2DTranspose).
 Skip connections for feature reuse.
 Two Conv2D layers to restore spatial resolution.

• L2 regularization applied to all layers.
• Final segmentation mask: 1×1 Conv2D with sigmoid activation.
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Algorithms Implementation and Training

Hyperparameters Tuning

ComeOnBoardPSG!

• Bayesian Optimization (BO) for hyperparameter tuning.

• BO targeted the following hyperparameters:
 Learning rate (η): [10⁻⁵, 10⁻³]
 L2 regularization strength (λ): [10⁻⁶, 10⁻³]
 Dropout rate (p): [0.1, 0.5]
 Batch size (b): [8, 32]

• The optimization process ran for 15 iterations, each consisting of 30
training epochs, aiming to maximize a custom objective function
that balanced segmentation accuracy while minimizing false
positives (FPs) and false negatives (FNs).

• Once the optimal hyperparameters were identified, final training
was conducted for up to 200 epochs, with early stopping applied
based on a patience of 30 epochs.
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Training and Testing Results 

• Training and validation loss and accuracy trends for the U-Net model.

U-Net model
Training loss 0.008558
Validation loss 0.016170
Training accuracy 0.997422
Validation accuracy 0.995020

ComeOnBoardPSG!

• Final performance metrics of the U-Net model on the test dataset:

Metric Value (%)
Accuracy 97.27
F1 Score 84.48

Recall 95.93

Predicted fire Predicted not fire

Actual fire 97.38% 2.62%
Actual not fire 4.06% 95.94%
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Training and Testing Results

Results of Transfer Learning on
PRISMA test dataset
• Quantitative and qualitative

results of the inference on the
PRISMA test set, composed of
patches extracted from PRISMA
hyperspectral images of Australia
and Oregon.

Unet (%)
Accuracy 93.83
F1 Score 96.82

Recall 93.83

ComeOnBoardPSG! 
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COTS Solutions for Edge Computing

• Selection based on in-house hardware accelerators*:
Hardware 
accelerator

Selected 
model

Rationale Advantages Future 
upgrades

Visual 
Processing 
Unit (VPU)

Intel® 
Movidius
Myriad 
Neural 
Compute 
Stick (NCS2)

Selected as an in-house solution 
with a history of successful 
deployment in previous works [1]. 
Predecessor (NCS) used in space 
onboard the Φ-Sat-1 mission [2].

• Low power 
consumption.

• Compact and 
efficient for 
AI inference

No upgrade 
planned for 
VPU.

[1] D. Spiller, K. Thangavel, S. T. Sasidharan, S. Amici, L. Ansalone, and R. Sabatini, “Wildfire segmentation analysis from edge
computing for on-board real-time alerts using hyperspectral imagery,” in 2022 IEEE International Conference on Metrology for
Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy: IEEE, Oct. 2022, pp. 725–730.
[2] G. Giuffrida et al., “The Φ-Sat-1 Mission: The First On-Board Deep Neural Network Demonstrator for Satellite Earth Observation,”
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14, 2022.

*Other boards, such as Raspberry Pi 3B and Raspberry Pi 4B, are considered for use in tandem with the NCS 2.

ComeOnBoardPSG!

VPU Solution

Final setup selected, consisting of a Raspberry Pi 4B with a
Intel® Movidius Myriad Neural Compute Stick 2 (NCS2)
connected to one of its USB 3.0 ports.

• The final setup features the Intel Neural Compute Stick 2 (NCS2) connected
to a USB 3.0 port of the Raspberry Pi 4B.
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COTS Solutions for Edge Computing

VPU Deployment for Real-Time Wildfire Detection

ComeOnBoardPSG!

• The workflow for deploying the deep learning model using
OpenVINO (OpenVINO (Open Visual Inference and Neural
Network Optimization) on the NCS2 consists of the following key
steps:

1.Model Training: the U-Net model is trained using TensorFlow
Keras and saved in the saved_model format to ensure
compatibility with OpenVINO.

2.Model Conversion: Since the models were custom and not
pre-optimized, we used OpenVINO's Model Optimizer to
convert the model into Intermediate Representation (IR) format
in floating Point 16 (FP16) precision. This process generates
.xml and .bin files.

3.Inference: after successful conversion, we used the OpenVINO
Inference Engine execute the neural network on the user
application.

Note: To ensure proper inference execution, the test dataset
was preprocessed and converted to FP16 precision before
being input into the inference engine.
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COTS Solutions for Edge Computing

• Efficiency of the proposed VPU and U-Net model pair.

• Performance considerations about the proposed U-Net/VPU pair:

Metric Intel® NCS2 VPU 
Final accuracy 93.83%
Inference time 299 ms

Power consumption 1.32W
(Idle) Power consumption 0.48 W

ComeOnBoardPSG!
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Lesson Learned and Future Works

• Future hardware accelerators deployment:

Hardware accelerator Selected model Rationale Advantages Future upgrades

Field Programmable Gate 
Array (FPGA)

AMD/Xilinx Zynq 
UltraScale+ MPSoC
with DPUCZDX8G IP 
core specifically the 
B1600 architecture.

Previously successfully explored in research 
group’s prior work [3]. 

• Low power 
consumption.

• High inference 
efficiency.

No upgrades 
considered up to 
now due to price 
constraints.

Graphic Processing Unit 
(GPU)

NVIDIA Jetson TX2 
Developer Kit

Selected due to prior successful use in similar 
applications. 

• Strong parallel 
processing 
capabilities.

Possible upgrade to 
NVIDIA Orin Nano 
4GB.

[3] A. Cratere et al., “Efficient FPGA-Accelerated Convolutional Neural Networks for Cloud Detection on CubeSats,” IEEE J. Miniaturization Air Space Syst., pp. 1–1, 2025.

ComeOnBoardPSG!

• Challenges encountered:

 Outdated documentation on OpenVINO-NCS2 integration, with many resources obsolete or unavailable.
 Intel suspended support for NCS2 starting with OpenVINO 2022.3.2 LTS, limiting troubleshooting options.
 Difficult integration process due to lack of up-to-date documentation and support, making system deployment

more complex.



THANKS FOR YOUR ATTENTION!
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