Orbite a media inclinazione per costellazioni di sistemi SAR compatti e loro utilizzo per analisi DInSAR: il caso della costellazione NIMBUS-IRIDE

Riccardo Lanari⁽¹⁾, Paolo Berardino⁽¹⁾, <u>Manuela Bonano⁽¹⁾</u>, Francesco Casu⁽¹⁾, Victor Cazcarra-Bes⁽²⁾, Antonio Ciccolella⁽³⁾, Gabriella Costa⁽³⁾, Federica Cotugno^(1,4), Felipe Martin Crespo⁽³⁾, Gordon Farquharson⁽²⁾, Guido Levrini⁽³⁾, Antonio Moccia⁽⁴⁾, Alfredo Renga⁽⁴⁾, Craig Stringham⁽²⁾, Nestor Yague-Martinez⁽²⁾ and Michele Manunta⁽¹⁾

(1) IREA-CNR, Napoli/Milano, Italy
(2) Capella Space Corporation, California, USA
(3) ESA-ESRIN, Frascati (Roma), Italy
(4) Università degli Studi di Napoli "Federico II", Napoli, Italy

From Line of Sight (LOS)....

Ascending

Descending

40.85° N

0.80° N

.... to Vertical and East-West deformation measurements

Workshop ASI "Tecnologie satellitari e analisi multi-rischio», 27 maggio 2025

bonano.m@irea.cnr.it

.... to Vertical and East-West deformation measurements

Vertical

East-West

Mid Inclination Orbits (Orbital Characteristics)

> MIO ground track tends to exhibit a near-horizontal orientation at latitudes close to the orbital inclination.

The inter-track distance tends to reduce as we move to the North of the AoI. This implies that, with the abovediscussed strategy, it is much easier to fill the inter-track distance in the north of the AoI than in the south.

Brief Introduction to the IRIDE Constellation

The Italian constellation **IRIDE** will be completed by 2026 under the management of ESA with the support of ASI for the Italian government.

It is conceptualized as a constellation of constellations, comprising multiple small satellites in LEO equipped with different sensing technologies (SAR, optical sensors) with **medium and high resolution capabilities.**

IRIDE will provide 8 key services to assist institutional entities, such as the DPC, in **systematically** monitoring Italian territory.

In addition to the primary goal, IRIDE can be used for **on-demand** acquisitions outside the Aol (i.e., specific defense purposes, commercial users)

The NIMBUS-SAR platform

- Focus: investigating the optimal orbital configuration for the NIMBUS/IRIDE SAR subconstellation (first batch).
- Objective: Italian territory coverage (AoI) with high spatial resolution (2-3 m) and short interferometric revisit time.

Parameter of the NIMBUS/IRIDE sub-constellation	Present Value
Number of satellites	6
Orbital altitude range	490-550 km
Orbital inclination range	44° up to SSO
Swath width extension range <u>Stripmap mode</u>	25-28 km
Spatial resolutions (az – ground rg) <u>Stripmap mode</u>	2.7 m – 2.7 m
Radar Wavelength	X-Band (λ ~ 3.1 cm)
Orbital control Tube 3σ	500 m
Looking mode	Right/Left

Coverage Analysis over the Aol

Swath width = 27.5 km

Interferometric revisit time = 6 days

Right-looking acquisition mode

MIO case (49°) – Ascending Passes

SSO case – Ascending Passes

Satellite 1 O Satellite 2 Satellite 3 Satellite 4 Satellite 5 Satellite 6

- The MIO scenario allows a very effective 6-day coverage of nearly all the Italian territory
- A further (even small) increase of the swath would be beneficial

Coverage Analysis over the Aol

Swath width = 27.5 km

Interferometric revisit time = 6 days

Right-looking acquisition mode

MIO case (49°) – Descending Passes

SSO case – Descending Passes

Satellite 1 O Satellite 2 Satellite 3 Satellite 4 Satellite 5 Satellite 6

- The MIO scenario allows a very effective 6-day coverage of nearly all the Italian territory
- A further (even small) increase of the swath would be beneficial

Mid Inclination Orbits (DInSAR scenario)

Foreshortening/Layover Ascending Case 49° Right Looking

Foreshortening/Layover Descending Case 49° Right Looking

70 % of Foreshortening/Layover points are common to both the ascending and descending cases in the North of the AoI.

Mid Inclination Orbits (DInSAR scenario)

Foreshortening/Layover Ascending Case 49° Right Looking Ascending Case 44° Left Looking

Foreshortening/Layover Descending Case 49° Right Looking Descending Case 44° Left Looking

70 % of Foreshortening/Layover points are common to both the ascending and descending cases in the North of the AoI.

A Second NIMBUS batch, in a left-looking acquisition mode (43° or 44°), would guarantee a complementary view and it would further enhance the 3D deformation mapping capability.

Mid Inclination Orbits (DInSAR scenario)

An advantage of MIO is the capability of overcoming the issue relevant to the limited accuracy toward the north-south deformation component, as it is evident from the decomposition equations.

 $d_{losAsc} = d_{up} cos \delta_{Asc} - d_{East} sin \delta_{Asc} cos \alpha_{Asc} - d_{North} sin \delta_{Asc} sin \alpha_{Asc}$ $d_{losDesc} = d_{up} cos \delta_{Desc} + d_{East} sin \delta_{Desc} cos \alpha_{Desc} - d_{North} sin \delta_{Desc} sin \alpha_{Desc}$

> Indeed, unlike the SSO case, in a 49 °MIO more than 40% of the North-South component contributes to the SAR Line of sight.

0.48 cm

0.38 cm

Accordingly, the joint exploitation of the NIMBUS-IRIDE (MIO) and CSK-CSG (SSO) DINSAR measurements will allow a 3D displacement retrieval at high spatial resolution.

Capella Space at an orbit inclination of 45°, experimentally acquired a repeat ground track (RGT) orbit with a repeat cycle of approximately 3 days.

During July-August 2024, Capella-14 acquired three Stripmap SAR datasets in ascending and descending orbits and right- and left-looking directions, using complementary satellite heading angles over the Campi Flegrei caldera.

Parameter	Value
Orbital altitude	590 km
Orbital inclination	45°
Revisit time (solar days)	~ 2.95 days
Radar frequency	X band
Acquisition mode	Stripmap
Looking direction	Right-Left
Swath width (range)	10 km
Radar frequency	X band
Slant range resolution	0.60 m
Azimuth resolution	1.20 m

PASS: **ASCENDING LEFT-LOOKING** ORBIT: **45° MIO** LOCAL HEADING ANGLE: **~60°** OFF-NADIR ANGLE: **~31°** DATASET SIZE: **17 ACQ**.

PASS: **ASCENDING RIGHT-LOOKING** ORBIT: **45° MIO** LOCAL HEADING ANGLE: **~71°** OFF-NADIR ANGLE: **~19°** DATASET SIZE: **17 ACQ**.

PASS: DESCENDING LEFT-LOOKING ORBIT: 45° MIO LOCAL HEADING ANGLE: ~121° OFF-NADIR ANGLE: ~33°

Workshop ASI "Tecnologie satellitari e analisi multi-rischio», 27 maggio 2025

DATASET SIZE: 16 ACQ.

MIO Capella Space LOS Results over Campi Flegrei Caldera (Italy)

Ascending Left

Ascending Right

Descending Left

LOS deformation velocity [cm/month] <- 1

> 1

Workshop ASI "Tecnologie satellitari e analisi multi-rischio», 27 maggio 2025

bonano.m@irea.cnr.it

GNSS Network (OV-INGV) in the Campi Flegrei Caldera

GNSS vs. MIO Capella Space Measurement Comparisons

Workshop ASI "Tecnologie satellitari e analisi multi-rischio», 27 maggio 2025

bonano.m@irea.cnr.it

GNSS vs. MIO Capella Space Measurement Comparisons

ASCENDING LEFT		ASCENDING RIGHT		DESCENDING LEFT	
GPS station	ST. DEV. [cm]	GPS station	ST. DEV. [cm]	GPS station	ST. DEV. [cm]
ACAE	0.29	ACAE	0.24	ACAE	0.51
ARFE	0.37	ARFE	0.35	ARFE	0.49
ASTR	0.17	ASTR	0.12	ASTR	0.25
BAIA	0.28	BAIA	0.35	BAAC	0.19
CMIS	0.62	CUMA	0.40	BAGN	0.20
CUMA	1.06	IPPO	0.21	CUMA	0.57
IPPO	0.11	ISMO	0.10	IPPO	0.22
ISMO	0.13	ISPT	0.40	ISMO	0.13
ISPT	0.26	MITT	0.37	ISPT	0.34
MITT	0.23	MORU	0.23	LICO	0.55
MORU	0.59	MPRO	0.61	MITT	0.44
MPRO	0.16	MSTA	0.32	MORU	0.66
MSTA	0.21	PIS1	0.25	MSTA	0.15
PIS1	0.19	QUAR	0.33	NISI	0.20
QUAR	0.69	RITE	0.40	PIS1	0.30
RITE	0.22	SOLO	0.31	QUAR	0.35
SOLO	0.22	STRZ	0.31	RITE	0.40
STRZ	0.28	ΤΟΙΑ	0.22	SOLO	0.36
TOIA	0.61	VICA	0.25	STRZ	0.60
VICA	0.27	VNAP	0.41	TOIA	0.61
VNAP	0.25	Mean Standard	0.31	VICA	0.62
Mean Standard	0.34	Deviation		VNAP Mean Standard	0.40
Deviation				Deviation	0.39

Workshop ASI "Tecnologie satellitari e analisi multi-rischio», 27 maggio 2025

bonano.m@irea.cnr.it

North-South Deformation Component Retrieval: Preliminary Results

Conclusions

- Mid Inclination Orbit (MIO) represents the optimal choice to retrieve the North-South deformation component that, conversely, cannot be measured in Sun Synchronous Orbits (SSO).
- The NIMBUS-SAR platform of the IRIDE programme will permit the systematic coverage of the Italian territory with short interferometric revisit time (6 days) and high-resolution capabilities (2-3 m). Accordingly, MIO and SSO (CSK/CSG) DInSAR products can be combined to retrieve value-added information on the 3D deformation field.
- **Capella Space** demonstrated the capability to exploit Mid Inclination Orbit configurations to estimate the multi-angle (3D) displacement through advanced DInSAR analyses.

