La missione ANIME: esplorazione degli asteroidi vicini alla Terra

ANIME SOLUTION

Asteroid Nodal Intersection Multiple Encounters

Davide Perna on behalf of the ANIME team

Workshop "L'impegno italiano nel settore dei CubeSat: tecnologie e missioni future" – 2° edizione – ASI, 4 luglio 2022

Agenzia Spaziale Italiana

- ✓ ASI ALCOR small satellites program
 - $\circ~$ 8-month Phase A KOM: 29 Nov. 2023
- ✓ 12-U CubeSat
 - Payload: 2 COTS cameras (+ transponder)
- Encounters with multiple near-Earth asteroids (2 fly-bys + 1 rendezvous)
 - \circ Science
 - o Planetary defense
 - \circ $\,$ Future resource utilization and human exploration $\,$
 - Technology validation in deep space

Target asteroids

Asteroid Nodal Intersection Multiple Encounters

Target asteroids

✓ <u>Rendez-vous target: 2000 SG344</u>

- Diameter ~ 40 m (H=24.7)
- ESA/NASA: Risky & Accessible

✓ *Fly-by targets:*

- Potentially Hazardous Asteroids
- Alternative scenarios

	Risk List										
No.	Object designation ↑↓	Diameter in m ↑↓	Impact date/time in UTC ↑↓	IP max ↑↓	PS max ↓₹	τs ↑↓	Years ↑↓	IP cum ↑↓	PS cum ↑↓	Vel. in km/s ↑↓	In list since in d ↑↓
1	Q 2023VD3	11 - 24*	2034-11-08 17:09	1/387	-2.65	0	2034-2098	1/387	-2.65	21.01	226
2	Q 1979XB	400 - 900*	2056-12-12 21:38	1/4.27E6	-2.84	0	2056-2113	1/1.36E6	-2.72	27.54	5729
3	Q 2008JL3	23 - 50*	2027-05-01 09:05	1/6711	-2.92	0	2027-2122	1/6211	-2.92	14.01	5729
4	Q 2000SG344	27 - 60*	2071-09-16 00:54	1/1117	-3.19	0	2069-2122	1/354	-2.78	11.27	5729

Object	♦ <mark>Orbit</mark> ♦	H (mag)	Estimated Diameter (m)	• occ •	Min. delta-V [delta-V, dur.] (km/s), (d)	Min. Duration [delta-V, dur.] (km/s), (d)	♦ Viable Trajectories	·
(2000 SG344)	17	24.7	20 - 89	3	3.563 , 346	5.952, 114	330268	35
(2023 YO1)	13	25.9	12 - 52	2	4.120 , 354	5.940, 178	255720)9
(2001 FR85)	13	24.8	19 - 85	3	4.610 , 354	5.991, 162	168164	11

Interplanetary trajectory

- ✓ Selection of flyby targets in light of observation requirements
- ✓ Launch windows in 2030 2033
- ✓ Range of escape conditions considered
- ✓ Fly-by approach analysis
 - \circ Reaction wheels performance \rightarrow minimum altitude at CA
 - Clock angle influences phase angle at close approach

Asteroid Nodal Intersection Multiple Encounters

Αľ

- 1. A max **satisfactory distance** is identified from Sci. Requirements
 - Threshold: 1/100 D
 - Goal: 1/1000 D
- 2. A min **feasible distance** is retrieved assuming:
 - Max spin rate: 10 °/s
 - Max spin acc.: 0.67 °/s²
 - Entire target in FoV
- If feasible distance < satisfactory distance, the target is deemed feasible for correct observation

Interplanetary trajectory – Fly By B-Plane Targeting

Approach

- After asteroid detection, a guidance strategy must be computed, to correct B-plane entry errors
- A chemical propulsion unit is needed to grant the necessary control authority in the small time available

Solution

Algorithm selected: Two-TCM stategy

Rendezvous Trajectory Analysis – Far Range

Far Range Trajectory, Hill's Frame.

Requirements and Constraints

- Imaging at different resolution in pan and RGB
- Imaging at different intervals of SPA
- Out of plane imaging
- Camera performance, NEMOCAM focal distance

Strategy

- Bi-impulse arcs and unpowered SRP exploiting arcs at 50 km and 25km distance
- Hyperbolic arcs at 10.5 km, to reach also higher SPA
- Holding distance at 5km, to have a more robust transfer towards the close range.

Rendezvous Trajectory Analysis – Close Range

Requirements and Constraints

- Imaging at high resolution
- Imaging at different intervals of SPA
- Out of plane imaging
- Unpowered arcs at distance <1km (radioscience)
- Unpowered arcs at v < 2v_{esc}
- NEMOCAM Out of Focus
- Camera performance, Pharos focal distance (400m)

Strategy

Hyperbolic arcs at 500m distance

Close Range Trajectory, Hill's Frame

Rendezvous Trajectory Analysis – Disposal

- After CR operations, transfer arc towards 200m distance, 0° SPA, in plane
- Free fall driven by SRP and asteroid's gravity
- Transfer of 1 day
- Free fall of 7.76 h (nominal)

The free fall could represent a **possible opportunity for radioscience**

Proposed disposal trajectory, Hill's Frame.

Radio science experiment

- ✓ To measure the asteroid's gravity to constraint its interior structure (total mass and mass distribution)
- To characterize the heliocentric orbit and non-gravitational accelerations (Yarkovsky)
- ✓ SRP particularly influent at small bodies environments → for 2000 SG344 it is the dominant acceleration above ~ 150 m altitude

Scientific return

	FoV	Spatial Resolution	Focus	
	(across track)	(@ 100 km)		
NEMOCAM	2.22°	0.95 m	> 10 km	
PHAROS	5.0°	7.8 m	> 400 m	

- ✓ <u>Both fly-bys</u>
 - $\circ~V_{rel}$ ~10 km/s @ ~50 km distance
 - Decimetre-scale images
- ✓ <u>Rendezvous with 2000 SG344</u>
 - 2-month nominal campaign
 - Cm-scale images
 - Radio science
 - Constraints to orbit/Yarkovsky/YORP
 - Refinement of Earth impact solutions

Geological units, crater SFD, boulder SFD, etc.

Input for streaming instability + N-body numerical simulations

Platform Configuration

Configuration

- > Configuration defined, **Standard 12U structure** with minor customization.
- > Protrusions: folded solar wings, secondary propulsion nozzles.

GRAZIE DELL'ATTENZIONE!

davide.perna@inaf.it