

A Review of the Experimental and Numerical Activities on a Hydrogen Peroxide-based Hybrid Rocket for Small Satellites

<u>S. Cassese</u>, S. Mungiguerra, R. Guida, R. Savino University of Naples "Federico II"

L'impegno Italiano nel settore dei CubeSat: tecnologie e missioni future (ASI – Roma, July, 2-4, 2024)

Introduction - Scenario

- > Emerging market for **Nanosatellites** (e.g. Cubesats)
- > Need for dedicated propulsion technologies for
 - Attitude Control
 - Drag Recovery
 - Orbit Changes
- Chemical technologies are suitable for relatively high-thrust, impulsive maneuvers at low power consumption
- Replacement of toxic hydrazine with greener propellants (H₂O₂, N₂O)
- > H_2O_2 and N_2O can be employed as **oxidizer** in the case of hybrid rockets, in combination with polymeric fuel grains

University of Naples «Federico II» is involved in RODiO Project, funded by Italian Space Agency

Experimental Setup

UNINA Aerospace Propulsion Laboratory, located in the F. Baracca Military Airport in Grazzanise (CE)

- Main measurements
 - Propellant mass flow rate: Coriflow M55 (re-computing needed based on compressible Bernoulli equation)
 - Catalytic and combustion chamber pressure: capacitive pressure transducers
 - Thrust: load cells on the test bench
 - Catalytic chamber temperature: K-type thermocouple

Hybrid Thruster Assemblies

Exemplary Test

Regression Rate

- All regression rates are higher than several correlation laws found in literature with different propellants
- Reason may be in fluid dynamics or thermal aspects

Ballistic Reconstructions

- Thermodynamics properties of couple H₂O₂-PVC allow to avoid the multiple solution region
- Complex Solution Method has been used for PVC
- Simplified Method has been used for HDPE and ABS
- Ballistic reconstructions allow to obtain regression laws by taking hundreds of points into consideration
- The reconstructed laws permit to design experiments with errors lower than 10% on the main parameters

CFD Simulations (HDPE)

- CFD simulations are performed for HDPE and ABS fuels
- The studied configuration generates a large recirculation zone, leading to a relatively high regression rate
- Grain heating plays a crucial role in regression rate
- Simulated regression rate profile along the grain shows good agreement with experimental findings

Test n.	$T_{i}(K)$	Exp ṙ́	CFD r
		(mm/s)	(mm/s)
8	300	0.48	0.448
8	400	//	0.464
8	500	//	0.486
9	300	0.80	0.730
9	500	//	0.80
10	300	0.66	0.610

- A 10N H2O2-based hybrid rocket was successfully tested, based on catalytic ignition of the mixture
- Regression rates were consistent and always higher than literature
- Experimental tests were reconstructed applying different principles to reduce the data scattering
- Regression rate results to be affected by combustion chamber pressure and grain heating, which may be crucial in such small-scale thrusters
- Further developments will include
 - Tests in different conditions and with other fuels
 - Unsteady simulations to better match experimental regression rate distribution along the grain
 - Experimental and Numerical investigations of the geometrical configuration impact on the internal ballistics

Final greetings

