

UNFOLDING THE **DEEP SPACE** POTENTIAL

# Lunar and Deep-Space CubeSat Navigation Solutions

Alessio Quinci

Flight Dynamics Engineer at Nautilus



Becoming the leading provider of **Flight Dynamics** services for **lunar** and **deep space** missions, enabling world's transition from terrestrial to interplanetary markets.

# NAUTILUS HERITAGE

#### UNIVERSITÀ DI BOLOGNA



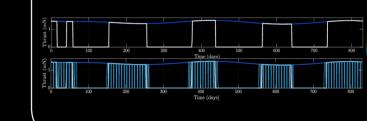
- Orbit determination and radio science experiments for interplanetary missions
- Radio science experiment requirements definition for future deep-space missions experiments (phase A)
- Engineering **software development** and support to **radio science** experiments (phases B/C/D).
- Radio science data pre-processing and calibrations.
- Optical navigation algorithms.



spin **off**®


DITECNICO DI MILANO

SPIN


### POLITECNICO DI MILANO



- Highly non-linear astrodynamics
  - Weak Stability Boundaries



- **EXTREMA** ERC-funded project
- **Optimal Control** applications
  - Small Bodies Close Proximity Operations
  - Low-thrust Trajectory Design
- Autonomous Navigation
- Optical Navigation

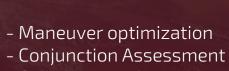




NAUTILUS

NAVIGATION IN SPAC

# NAUTILUS EXPERTISE


#### Flight Dynamics Experts



FD software developmentMission analysis

Precise Orbit Determination - LEO/GEO

- Deep Space



- Collision Avoidance

Real-time navigation operations - Prime / Shadow



- Innovative FD solutions
- FD as a service
- Developing on-board solutions

## **NEMO** SOFTWARE



BUSINESS INCUBATION CENTRE

Milan



#### Navigation and trajectory Engineering software for Missions in Outer space

Flight Dynamics Software Suite to enable **easy** and **cost-effective** Navigation and Guidance of Lunar and Deep-Space Spacecraft



Real-time radiometric data processing



Smart

scheduling

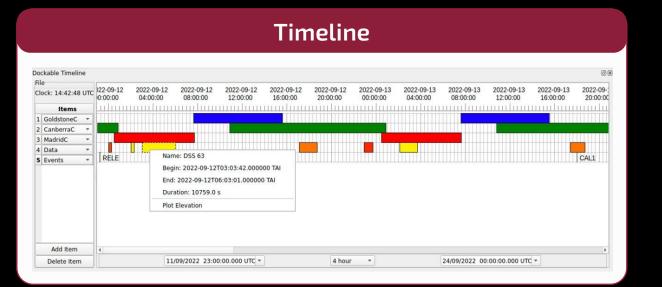
Task Automation

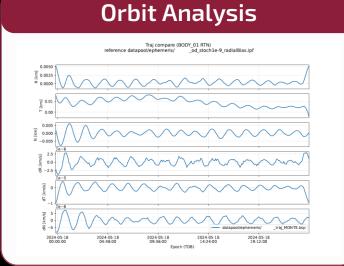


Interactive monitoring cockpit

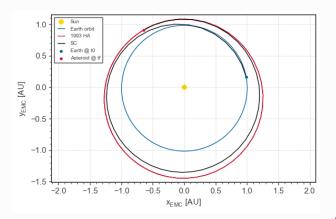


Modularity & Customization

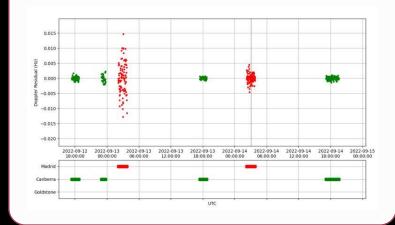

# **NEMO** SOFTWARE



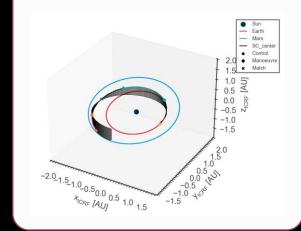

Milan


BUSINESS

INCUBATION CENTRE







#### **Mission Analysis**



#### Navigation



#### Guidance



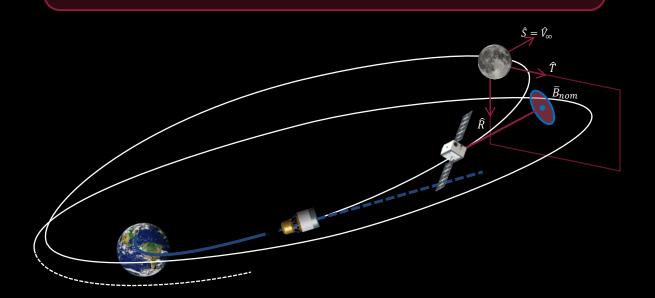
 $\ensuremath{\mathbb{C}}$  2024 Nautilus - Do not distribuite without permission

# NAUTILUS **SERVICES**



### Deep Space Navigation Detailed Overview

- OD reports and maneuver decision meetings
- Trajectory reconstruction and comparison
- Covariance comparison


- Radiometric data
  Passthrough and Analysis
- Maneuver computation and reconstruction
- Trajectory optimization

#### **Different levels of support**: Real-time, Off-line, on demand for critical phases

# MOON MISSIONS

### Challenges

- Many satellites release condition (SLS)
- Limited communication windows
- Precise Orbit Determination to satisfy ground stations pointing requirements and to reduce orbit dispersion when targeting the Moon (impact avoidance, planetary protection)



### Navigation solution

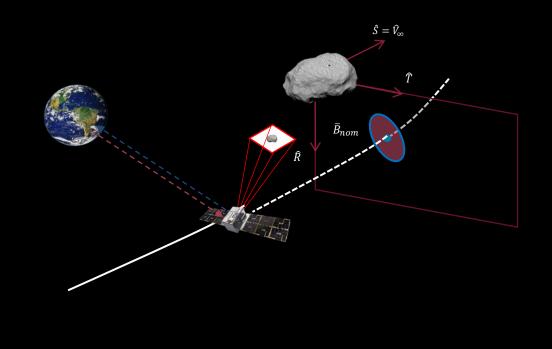
Earth-based radiometric navigation (Range, Doppler)  $\rightarrow$  10 m level accuracy

#### PROS

- Doppler included in 2-way communications
- Range can be included in communications with a small datarate loss

#### × CONS:

- No info about the relative position with respect to the target (e.g. Moon)
- Requires GS coverage and man-hours


# **RENDEZ-VOUS** MISSIONS

### Challenges

- Proximity and landing phases require **accurate** knowledge of SC-target **relative state**
- Uncertainty on target asteroid ephemeris

### Solutions

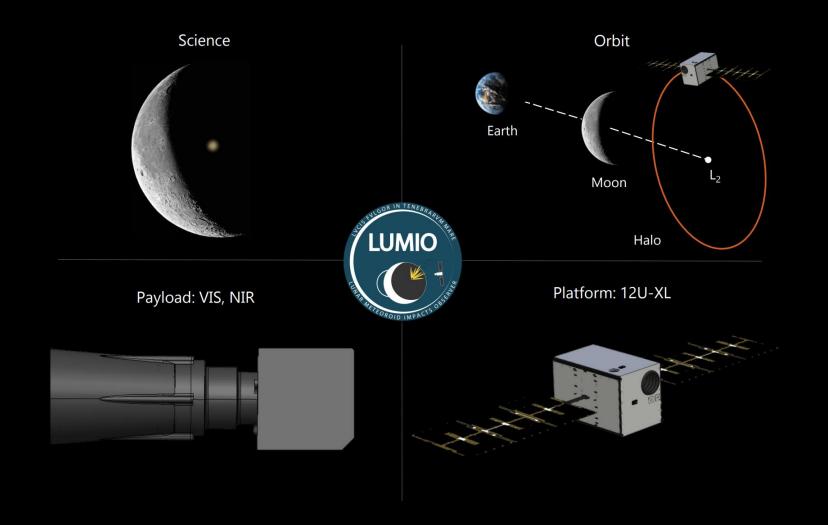
- **Optical navigation** for close encounter as additional source of information
- **LIDAR** for relative velocity and positioning during landing phase
- ISL if available (multiple spacecraft)
- Radio science experiments to improve ephemeris accuracy of the target asteroid



# LUMIO MISSION



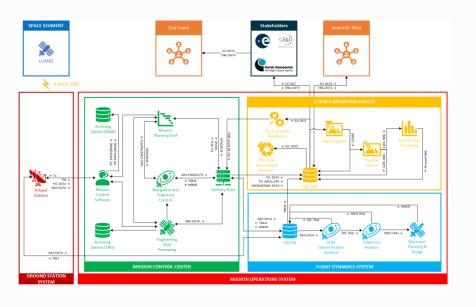
POLITECNICO MILANO 1863

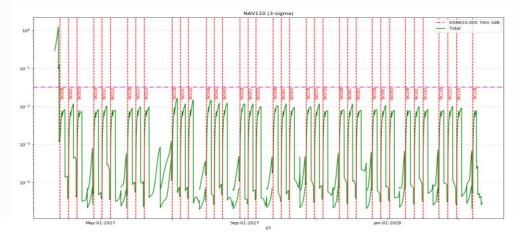

**Consortium Polimi**, Argotec, Leonardo, IMT, S&T, Nautilus

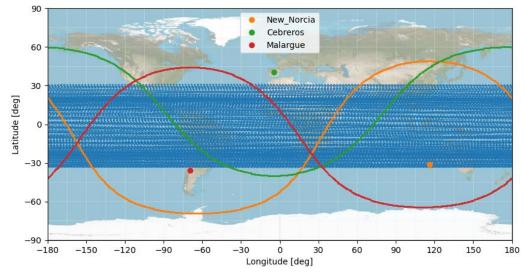
## Highlights

- 12U XL CubeSat
- WSB transfer to Earth-Moon L2 Halo Orbit

## Activities


- Phases B-C: Ground Segment and Operations Design
- Next phases: Operational Orbit Determination & Orbit Control





# LUMIO MISSION

### CONTRIBUTION

- Ground segment achitecture definition
- Coverage analysis and tracking windows compatibility
- Station keeping strategy validation
- Prelimary tracking schedule and navigation analysis







## NAUTILUS SERVICES



**LEO Precise Orbit Determination and Flight Dynamics OPS** Detailed Overview

- GPS- and radiometric-based orbit determination
- Trajectory reconstruction and comparison
- Collision Assessment and Avoidance Manoeuver design

- LEOP Preliminary orbit determination
- Maneuver optimization,
  reconstruction and calibration
- Reference orbit acquisition strategy definition and implementation

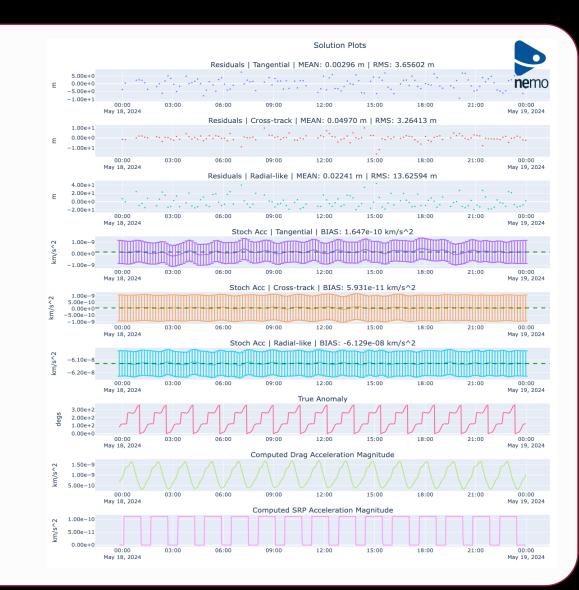
#### Different levels of support:

Real-time, Off-line, on demand for critical phases

# **NEMO** SOFTWARE

### CASE STUDY

#### GOAL


To perform a POD of a 6U CubeSat, placed on a 550-600 km Sun-Synchronous orbit, with in-house NEMO Python toolkit based on ESA GODOT

#### PROCEDURES

- Satellite dynamical model setup
- GPS data pre-processing
- Satellite a-priori state @ T0 obtained from TLE
- Fitting performed with SRI least square filter Estimated parameters are satellite initial state @ T0, drag and reflection coefficients, stochastic accelerations
- Post-process (orbit files and plots generation)

#### RESULTS

- Post-fit residuals and state covariance are sufficiently small to enable accurate orbit reconstruction and satisfy antenna pointing requirements
  - 10x improvement wrt previous approach



# NAUTILUS **TEAM**



**Alfredo Locarini, PhD** CEO Founder



**Alessandro Morselli, PhD** CTO Founder



**Luis Gomez Casajus, PhD** COO Founder



**Marco Maggi** CFO



**Alessio Quinci** Flight Dynamics Eng.



**Igor Gai, PhD** Flight Dynamics Eng.



**Marco Lombardo, PhD** Flight Dynamics Eng.

#### **Business Developers**



**Prof. Francesco Topputo** Business Developer Co-Founder



**Prof. Paolo Tortora** Business Developer Co-Founder



**Marco Zannoni, PhD** Flight Dynamics Expert Co-Founder



**Dario Modenini, PhD** Attitude Control Expert Co-Founder



# UNFOLDING THE DEEP SPACE POTENTIAL

**OUR CONTACTS:** 

info@spacenautilus.com



www.spacenautilus.com