

SAILS

Spaceborne Autonomous Identification and Localization System (SAILS) for a single 12U Cubesat platform in LEO Orbit

L'Impegno Italiano nel Settore dei CubeSat: Tecnologie e Missioni Future – Seconda Edizione ASI, 2-4/Luglio/2024

Contents

- Introduction
- SAILS description
- CONOPS
- Payload description
- Antenna & DBF preliminary
- Incremental
- Conclusions

Introduction

- Spaceborne Autonomous Identification and Localization System (SAILS)
- SAILS has been proposed as a mission in response to the call "FUTURE MISSIONI PER CUBESAT"

- It is a multichannel passive X band received with on board digital beamformer and steering for the geolocalization of RF transmitter on Earth
- The platform is a 12U Cubesat bus
- The mission include a ground processing station for the further improvement of the onboard geolocation

Introduction

The SAILS Instrument is a passive sensor operating in X-Band and conceived to meet small platform constraints.

Its main elements are:

ELINT Forward Looking ELINT Backward Looking SAR Acquisition X-band Antenna Array; • Flight path IF Conversion Unit (IFCU); ۰ Digital Receiver & Processor Unit (DRPU); . Power and Control Unit (PCU); ۰ Real-time algorithms for initial DOA estimates •

Partners

METASENSING SRL

Payload and Ground Facility design, manufacturing and integration. Responsible of the End to End Demonstration Results.

• NPC SPACEMIND

Platform design, manufacturing and integration

• POLITECNICO DI BARI

The University will support the ADCS manufacturing and testing.

SAILS : Mission

- To design and manufacture a small payload for passive surveillance of noncooperative emitters working at X-band and located on ground.
- Applications are both civilians and military:
 - rescue of boats and ships
 - Detection of unwanted emissions (disturbing other signals)
 - Additional payload for other radar or communication satellites (anti-jamming)
 - At different bandwidth can be used to receive ADS-B or AIS
 - Gather information about radar

Pros & Cons

Pros:

- Compact and lightweight
- Spaceborne systems can observe all the earth
- Geometry allows to discriminate the emitters in both azimuth and elevation

Cons:

- Limited processing power
- Limited antenna & payload size
 - A swarm of cubesat each specialized in its band could resolve this aspect
- Limited persistence

Detection

- Data Reduction
- Data Transfers
- Auto-designation
- Ground Processing
 - geolocation
- <u>Acquisition & Tracking</u>
 - Measurement of
 - designated from ground or auto-designated
 - Interference suppression
 - Specific Emitter parameters

When measuring one emitters the other must be cancelled

 At the end of each acquisition, the dataset containing a list of all the generated emitter track files will be formatted & made available for other purposes.

28.9

A LKD

A_SCT 0.223

A_SCT

A_TWS 0.160

0.164

0.063

6421.997 F. FIX

9750.992 F_AGI

9906 998

NO MOP 9846.985 F_FIX

759.000 P_FIX 52.1

702.000 P_FIX 52.5

P_FIX 34.0

645.000 P SWC ... 43.9

NO MOP

NO MOP

NO MOP

NO MOP

4.784

18.812

10.156

10.148

Basic mission parameters

Mission Element	Description	
Mission lifetime	6 months	
Orbit parameter	i=97.38° (SSO), e=0, RAAN=0°, w=0°, θ=0°;	
Altitude	500 km	
Ground Station	Rome: average visibility 400 s, 4 times a day	

Name	Description	Note
ERP	Effective Radiated Power	Radiated towards satellite $P_t \cdot G_{Tx}(\phi_s, \theta_s)$
PRI	Pulse Repetition Interval/Width	Persistence: pulsed or continuous
	Position on Ground	
f_c	Central Frequency	
B _w	Signal Modulation Bandwidth	Chirp/PAM/PSK,FSK
PW	Pulse Width	If pulsed

same time different frequency same frequency different time f_0 f_0 f_0 **Deinterleaving**: emitters can be discriminated in **time**, **frequency** and **position (angle)**

The system must be designed to work even with a single pulse

© 2008 – 2024 MetaSensing All Rights Reserved - Confidential

SAILS : System

SAILS bus

The SAILS Cubesat ia 12U/16U platform for a LEO Sunsynchronous Orbit and includes:

- Attitude Determination and Control System (ADCS) $\;[$

1

- Power supply
- Data link subsystems
- RF Payload

System Functional View

Space Segment

- Antenna Array
- RF & Digitizing unit (merged?)
- Data Reduction Filter
 - Based on detection threshold
- Data Records (w/Attitude)
- Data Link

Ground Segment

- Detection & Surveillance
- Geolocation
- Interference Suppression
 - Digital Beamforming
- Parameter Extraction
- Command & Controls

Critical Items: Antenna Array

traditional antenna & traditional processing

Azumth [degs]

How to maximize swath area while keeping high resolution?

... by working on the antenna array and on signal processing ...

Advanced Processing & Traditional Antenna

Implement the detection as an image processing problem & consider using AI

40

50

17

20

10

Performance overview

Parameter	Estimated Performance
Frequency Coverage	8 ÷ 12 GHz
Instantaneous Dynamic	65 dB
Frequency Band	Selectable
Digital IBW	600÷700 MHz
Antenna Array Gain	> 12 dBi
Nr of Array Elements	16
Array Size	< 20 cm x 20 cm
Antenna Array FOV	> 30 degs
DOA Accuracy	0.1 ÷ 0.5 deg rms
Swath	> 300 x 300 Km
Emitter ERP	80 dBm
Single-Pulse Localization Accuracy	Better than 3 Km rms
On-Ground Tracking Localization	Better than 300 m rms
Uplink bit rate [Mbps]	TBD
Downlink bit rate [Mbps]	TBD
AOCS Pointing Accuray	<0.2 [degs]
Pointing knowledge Accuracy	<0.1 [degs]

- The lack of a reference scenario makes the maturity of algorithm at the time of launch to be necessarily low
- Exploit commissioning phase to gather information about real scenario and trim algorithms and strategies for both on-board (mostly) and on-ground processor.
- Need of a mechanism for fast reconfiguration of on-board FPGA & SW

REQ: Uplink must support one reconfiguration per pass

- The SAILS mission concept and partner has been introduced
- The mission is a selected project for the ASI Future Cubesat Missions and it features an RF passive payload with an X band phased array antenna and the digital beam forming processing unit
- The main focus of the mission is to demonstrated the real time in-orbit detection and tracking capability

MetaSensing BV The Netherlands

MetaSensing AP Pte Ltd Singapore

MetaSensing S.r.l. Italy

www.metasensing.com