

NanoDynA - 3DOF Testbed for CubeSats Attitude Determination and Control

Dario Modenini

Founder at Nautilus

Associate Professor

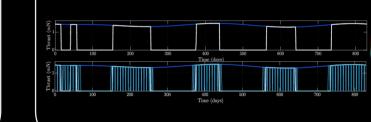
Department of Industrial Engineering – Università di Bologna

© 2024 Nautilus - Do not distribuite without permission

NAUTILUS HERITAGE

UNIVERSITÀ DI BOLOGNA

- Orbit determination and radio science experiments for interplanetary missions
- Radio science experiment requirements definition for future deep-space missions experiments (phase A)
- Engineering **software development** and support to **radio science** experiments (phases B/C/D).
- Radio science data pre-processing and calibrations.
- Optical navigation algorithms
- Attitude Determination and Control



SPIN ALMA MATER STUDIORIM UNIVERSITÀ DI BOLOGNA POLITECNICO DI MILANO

POLITECNICO DI MILANO

- Highly non-linear astrodynamics
 - Weak Stability Boundaries
- Autonomous interplanetary GNC
 - **EXTREMA** ERC-funded project
- Optimal Control applications
 - Small Bodies Close Proximity Operations
 - Low-thrust Trajectory Design
- Autonomous Navigation
- Optical Navigation

NAUTILUS

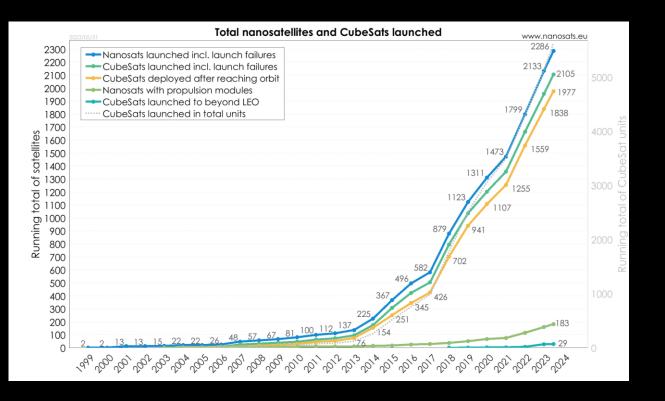
NAVIGATION IN SPACE

NanoDynA CONSORTIUM

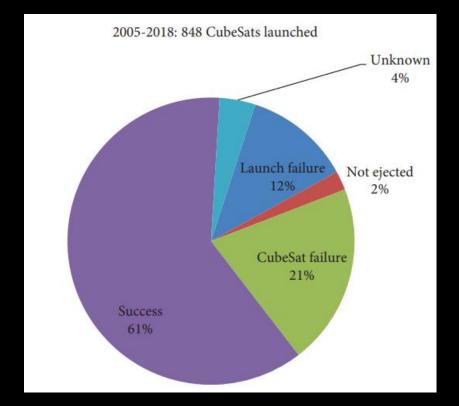
Nautilus Navigation in Space Srl – Prime Contractor Alfredo Locarini – Project Manager Dario Modenini – Technical Manager

Università di Bologna Andrea Curatolo – System Engineer Daniele Pecorella, Giacomo Curzi, Alessandro Lotti, Project Engineers

INTERDEPARTMENTAL ALMA MATER STUDIORUM **CENTRE FOR INDUSTRIAL** UNIVERSITÀ DI BOLOGNA **AEROSPACE RESEARCH**



• CCS3 European Space Agency – Funding Institute Andrew Hyslop - Technical Officer


NanoDynA **CONTEXT**

More and more CubeSats launched

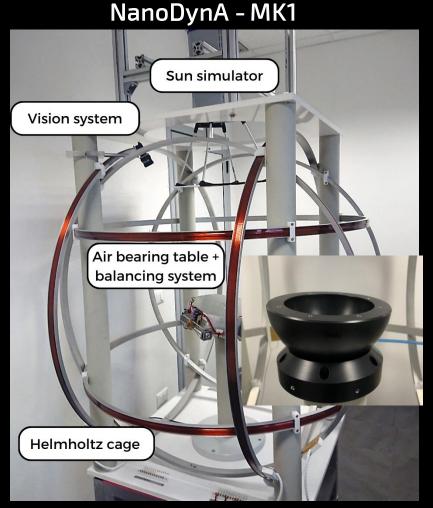
Still high failure rate

Credit: E. Kulu, \Nanosats database." Available at https://www.nanosats.eu/

Credit: T. Villela, C. Costa, A. Brand~ao, F. Bueno, and R. Leonardi, "Towards the thousandth cubesat: A statistical overview," International Journal of Aerospace Engineering, vol. 2019, pp. 1-13, jan 2019.

NanoDynA **CONTEXT**

"Flatsat" approach



Credit: ESA

"Test-as-you-fly" approach

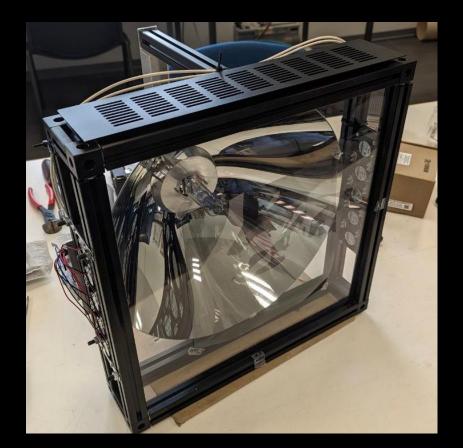
NanoDynA Heritage: MK1

• Developed at u3S Lab Università di Bologna since 2015

- Based on table-top air bearing, payload capacity $\approx 5 \text{ kg}$
- COTS triaxial Helmholtz cage for in-orbit magnetic field simulation
- Fixed height pedestal to support the air-bearing table
- Automatic mass balancing system with shifting masses
- Fixed, LED-source Sun simulator
- Monocular ground truth vision system developed in-house
 ≈ 0.3° accuracy

NanoDynA MK2

- Suitable to test 1U, 3U, 6U and 12U CubeSats with sizes, mass, CoM positions specified by the CubeSat standard
- Standardized mechanical interfaces
- Pedestal with adjustable height for payloads in different orientations
- Mountable battery pack to supply the hosted CubeSat with up to 30 W for 3 hrs at a DC-regulated voltage of 8, 12, 16, 18, or 24 V
- Communication module with CAN and I2C to bi-directional TMTC relaying with ground station
- Simulated Sunlight with different beta angles via movable sun-lamp and Earth's albedo (via Earth albedo lamp)
- Metal Halide Lamp for improved Sunlight spectral matching
- COTS ground-truth system for independent attitude estimation and optionally emulate star tracker accuracy $\approx 0.1^\circ$
- Compatibility with ISO 8 class clean room/tent



NanoDynA Magnetic Field Simulator

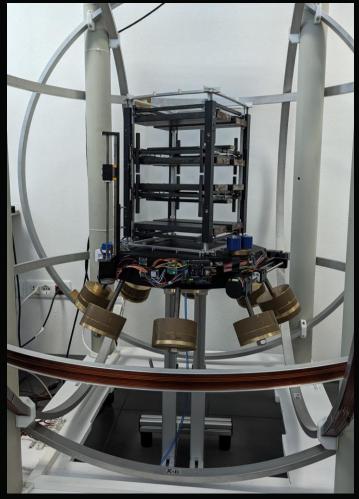
- COTS Helmholtz cage: Ferronato[®] BH-1300-3-C from Serviciencia - Spain
- Three orthogonal coils ($D \approx 1300 \text{ mm}$)
- Arbitrary magnetic field in the range ±10 Gauss
- In-homogeneity below 1% in a sphere of 404 mm in diameter
- Nominal field-to-current ratio 50.5 μ T/A, ±1%

NanoDynA Sun Simulator



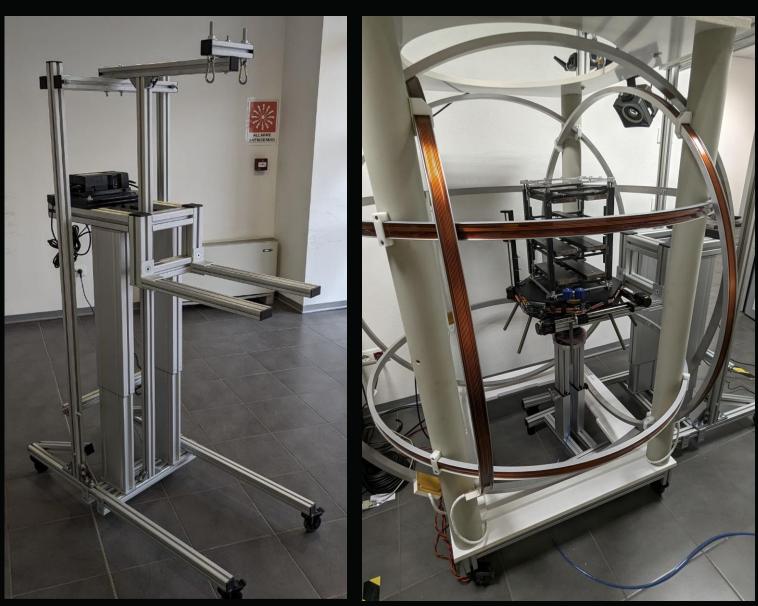
- Metal Halide Bulb for better sunlight spectral matching @ 5600 K
- Highly-accurate electroformed parabolic reflector for collimated light-beam
- Custom mechanical enclosure provides protection in case of catastrophic failure of the bulb
- Includes ten 12V DC fans for heat dissipation
- Frontal polycarbonate panel for UV radiation reduction

NanoDynA Tunable beta-angle simulation

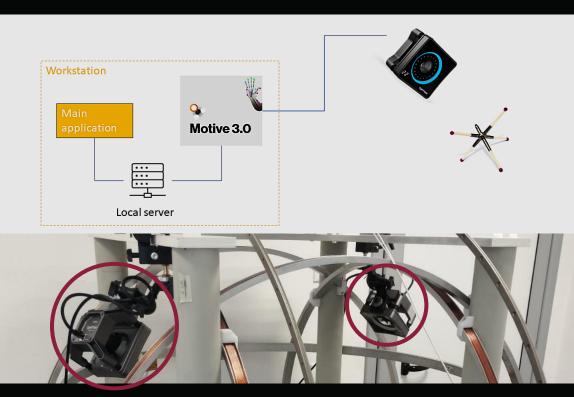


NanoDynA Standardized Mechanical Interfaces

6U CubeSat Mock-up Mounting (6U Model courtesy of NPC – SpaceMind) Mechanical fixtures act solely on the CubeSat rail profiles interfacing with the deployer


No other contact points to avoid damages

12U CubeSat Mock-up Mounting


NanoDynA Mechanical Ground Support Equipment

- Lifter with custom design for positioning 6U and 12U CubeSats within the facility
- Electrically actuated
- Sized to fit within the cage with any orientation of the CubeSat under test
- Cleanroom compatible

NanoDynA Ground Truth Vision System

- COTS from Optitrack Inc
- High-speed MoCap stereo cameras 2Mpx
- Camera tracks reflective markers
- Pose solution at 200Hz

NanoDynA Next Steps

Facility development ends in July 2024

> Delivery and commissioning to ESTEC in September 2024

Planned an upgrade to handle 16U CubeSats in Q4 2024

NanoDynA Conclusions

- NanoDynA MK2 is a brand-new facility that implements a "test-as-you-fly" verification approach for the ADCS of CubeSats
- Developed by Nautilus Navigation in Space + Università di Bologna and funded by ESA, its first prototype will be shipped, installed, and commissioned in ESTEC
- The facility is capable of hosting full CubeSat platforms from 1U to 12U in any orientation
- If replicated (and further improved) in Italy, it could serve the ongoing national CubeSats missions, such as those of the Alcor program, as an effective tool for reducing in-flight anomalies thereby contributing to the missions' success

NAUTILUS

NAVIGATION IN SPACE

UNFOLDING THE DEEP SPACE POTENTIAL

ALMA MATER STUDIORUM Università di Bologna INTERDEPARTMENTAL CENTRE FOR INDUSTRIAL AEROSPACE RESEARCH

OUR CONTACTS:

info@spacenautilus.com

www.spacenautilus.com