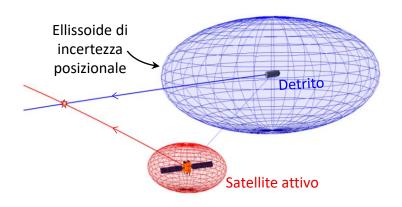

SISTEMA DI ANTI-COLLISIONE AUTONOMO PER SATELLITI IN LEO

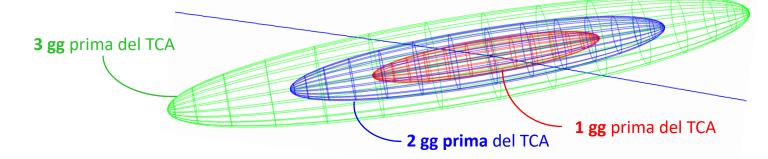
G. Campiti, G. Brunetti, C. Ciminelli

L'Impegno Italiano nel Settore dei CubeSat: Tecnologie e Missioni Future – Seconda Edizione | 2-4 Luglio 2024

INTRODUZIONE


Il numero di Manovre di Anti-Collisione (CAM) in LEO è in forte crescita

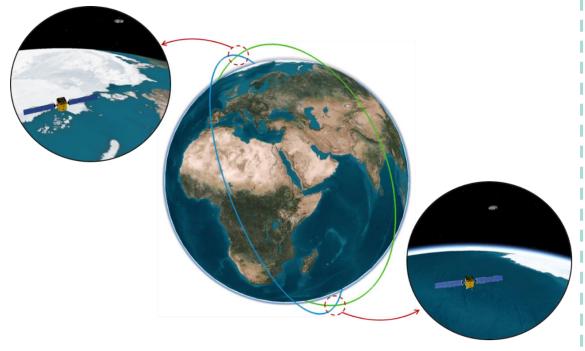
- Satelliti ESA hanno effettuato in media 3-4 CAM/anno nel 2023, mentre 2 CAM/anno nel 2022 [ESA, 2023]
- Starlink: 25k CAM nel primo semestre del 2023, un tasso raddoppiato rispetto ai precedenti 6 mesi [SpaceX, 2023]

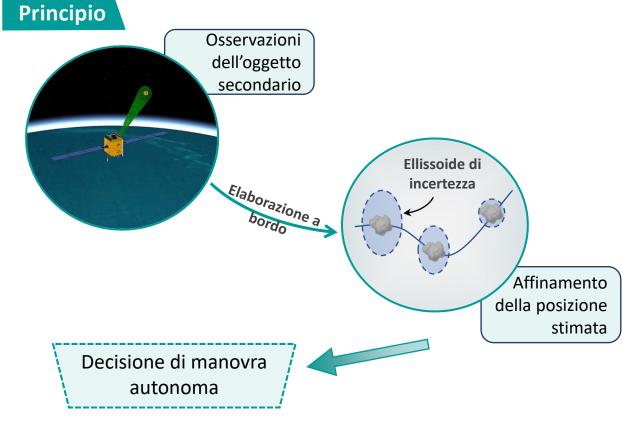

Tuttavia.. il reale rischio di collisione è ancora molto basso

• ESA: <u>il tempo medio tra due impatti</u> su una superficie di 30m² orbitante ad un'altitudine di 800 km è di <u>101 anni,</u> considerando detriti di dimensioni >1 cm [Siminski, 2022]

Motivo: grosse incertezze sulla posizione stimata degli oggetti al momento del Closest Approach (TCA)

Intervallo di propagazione lungo = grosse incertezze

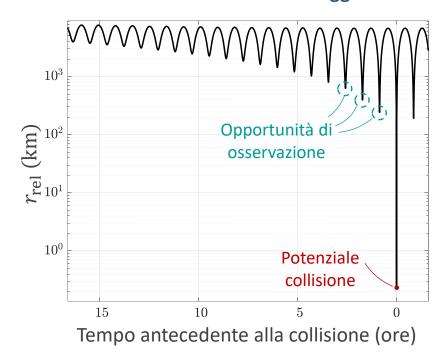




PRINCIPIO

Sfruttare gli approcci ravvicinati prima del TCA per fare **osservazioni autonome** dell'oggetto secondario e conseguentemente **ridurre** la sua **incertezza posizionale**

Tipica geometria orbitale di oggetti a rischio di collisione



OPPORTUNITÀ DI OSSERVAZIONE PRIMA DEL TCA

Analisi

Ricostruiti >10,000 eventi di congiunzione reali a partire da Two-Line Elements (TLEs)

Distanza relativa tra due oggetti*

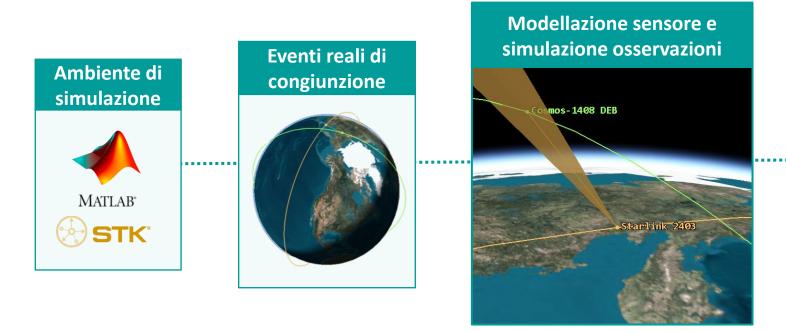
Alcuni risultati

- Oggetti a rischio di collisione in LEO hanno quasi sempre **orbite molto simili** \rightarrow due **punti di quasi-intersezione** orbitale esistono
- La distanza relativa raggiunge un minimo locale una volta ogni:

$$\Delta T = \frac{T_1 \cdot T_2}{T_1 + T_2}$$
 (periodi orbitali)

- Nel 70% delle volte, i due oggetti passeranno a meno di 100 km prima del TCA, e nel 90% delle volte a meno di 300 km
- Con un range di rilevamento di 500 km, almeno due opportunità di oltre 10 secondi esistono nel 80% dei casi
- Tecnologia ottica è l'unica fattibile per il sensore di bordo

^{*}Campiti et al. "Orbital Kinematics of Conjuncting Objects and Opportunities for Autonomous Observations", Acta Astronautica, 2023, 208: 355-366



STUDIO PARAMETRICO DEL SENSORE DI BORDO

Prossime domande:

- Come sono le condizioni di visibilità durante questi incontri?
- Di quali specifiche ha bisogno il sensore?

DETTAGLI DELLE SIMULAZIONI

Modelli del sensore

	#	D [cm]	S [-]	FoV [deg]	$oldsymbol{\sigma_{ m rn}}_{[e^{ extsf{-}}/{ m pxl}]}$	σ _{dc} [<i>e</i> ⁻ /pxl/s]
	<u> </u>	2	0.5	10 × 10	30	80
	2	2	0.5	20×20	30	80
	3	2	0.6	15×15	5	30
_	4	2	0.6	20×20	5	30
~Star	5	5	0.5	15×15	30	80
trackers	6	5	0.6	20×20	5	30
	7	7.5	0.5	10×10	30	80
	8	7.5	0.5	15×15	30	80
	9	10	0.6	10×10	5	30
	10	15	8.0	10 × 10	3	25

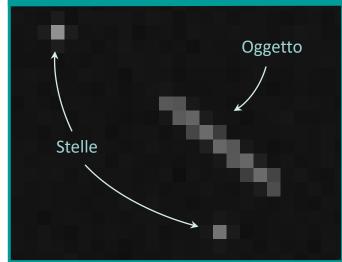
Alcuni degli altri parametri:

• Bit depth: 8 bit

• Tempo di esposizione: 10 – 500 ms

• 1024×1024 pixel

Modello di oggetto secondario

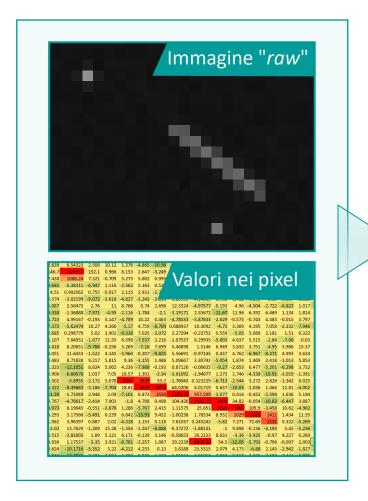

Forma: sferica

• Materiale: corpo grigio

Riflettività (albedo): 0.13 – 0.21

• **Diametro**: 10 cm, 20 cm, 40 cm, 100, 200 cm

Strategia di osservazione siderale



- Sensore puntato verso le stelle fisse
- Oggetti in transito lasciano una striscia (streak) nel FoV

POST-PROCESSING DELLE IMMAGINI & CALCOLO SNR

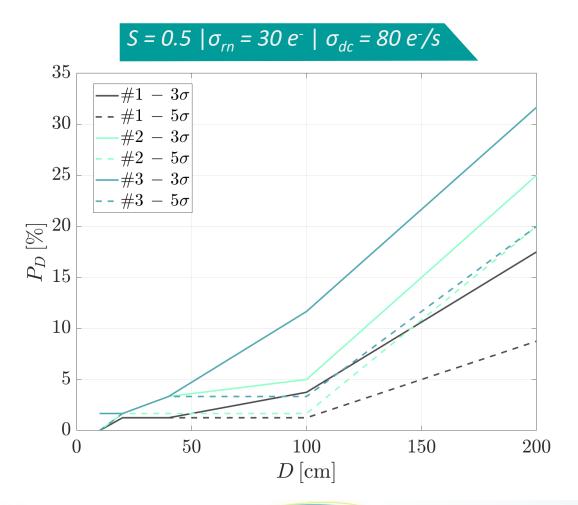
Identificazione target

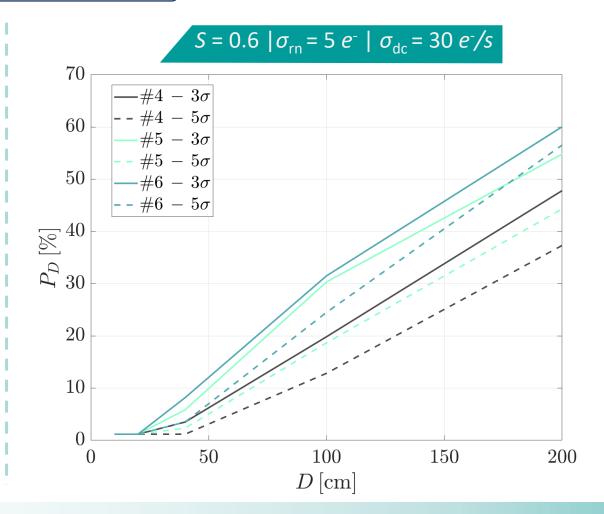
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	13	3	0	0	0	0	0	0	0	0	0
0	0	5	3242.68	2777.55	17	-3.73E-09	0	0	0	0	0	0	0
0	0	-3.73E-09	28	3633.42	4943.5	66	-1.49E-08	0	0	0	0	0	0
0	0	0	0	5	1433.76	6171.5	931.122	7	0	0	0	0	0
0	0	0	0	0	2.98E-08	93.7771	5533.25	3080.58	27	-7.45E-09	0	0	0
0	0	0	0	0	0	0	27	3243.36	5415.76	103	0	0	0
0	0	0	0	0	0	0	0	6	1030.43	6290.19	1345.25	-2.98E-08	0
0	0	0	0	0	0	0	0	0	0	81	2146.99	6	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

- Regione di interesse attorno al target (RoI)
- Classificazione pixel: segnale vs rumore

9.217	5.815	9.36	-3.16	1.486	5.09667	3.30741	-5.05	1.874	1.469	2.418	-1.01	5.853	5.273
8.824	5.062	4.236	-7.99	-0.19	0.87126	-0.0063	-9.27	-2.65	6.477	-5.2	-6.3	3.732	-0.26
1.037	7.05	18.57	1.301	-3.34	-3.6109	-1.9408	1.273	1.746	-4.34	-10.9	-3.02	-1.39	-5.97
-2.17	5.078	3247	2829	33.2	-1.7604	0.32323	-6.71	-2.54	3.272	2.826	-1.34	8.025	1.559
-3.19	-7.7	18.61	3610	5078	64.0206	4.01719	0.637	-10	-1.04	1.464	12.81	-4	-3.8
2.948	2.09	-7.1	6.873	1550	6199.79	957.599	-3.08	0.414	-0.45	-2.59	1.636	5.194	-1.26
-2.41	7.903	-1.8	4.708	0.498	104.426	5430.75	3201	34.82	-0.05	-10.8	-6.45	3.887	-0.4
-0.55	-3.88	1.286	-5.77	2.415	1.11575	25.651	3326	5405	109.9	-3.46	10.62	-4.9	-2.66
-5.49	0.239	6.842	-13.9	9.452	-1.0024	1.78534	8.932	1029	6161	1411	1.434	11.55	-3.3
0.887	2.02	-4.32	1.153	0.118	7.61037	0.24524	-3.82	7.271	72.69	2131	0.322	-5.27	8.545
-1.21	15.28	-1.35	-1.25	-8.89	-0.3727	-1.8813	-1	9.898	-0.14	-4.19	5.45	-5.24	-7.99
1.89	5.121	4.171	-0.14	3.146	-0.5865	26.2133	8.631	-3.36	3.92		227	0.269	2.987
-3.35	3.921	-8.7	-2.26	1.087	29.2239	8009.66	54.5	-12	-5.79	>Ro	-0.1	2.003	-5.86
-5.35	3.22	-4.21	4.253	0.13	3.8188	23.5315	2.079	4.173	-6.88		2.94	-1.83	-10.4

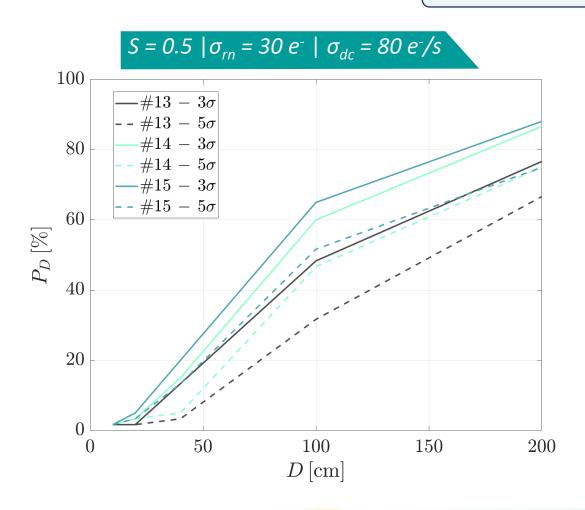
Miglior pixel del target

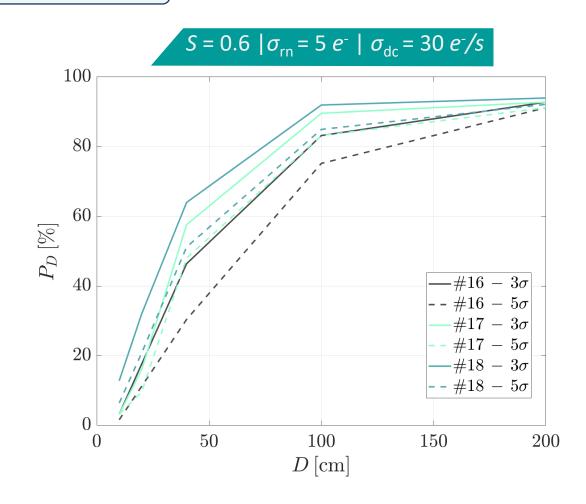

$$SNR = \frac{S}{\sigma_n}$$


Deviazione std del rumore

PROBABILITÀ DI RILEVAMENTO [1]

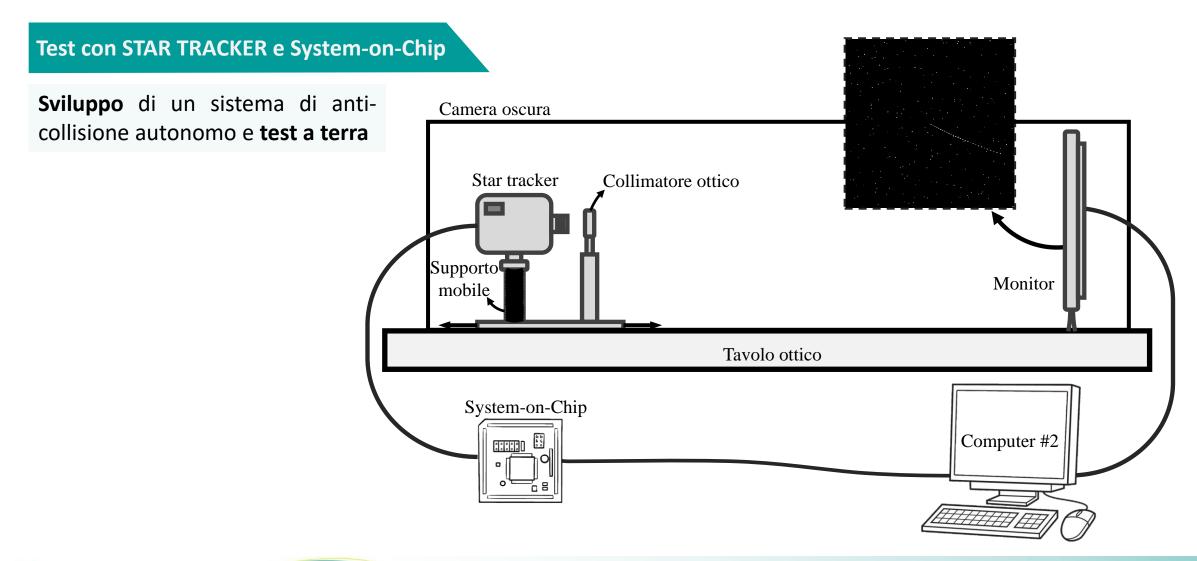
Sensori con apertura ottica: 2 cm





PROBABILITÀ DI RILEVAMENTO [2]

Sensori con apertura ottica: 7.5 cm



PROSSIMI STEP

POLIBASAT: MISSIONE DIMOSTRATIVA

PoliBaSat è la prima missione del Politecnico di Bari, volta a lanciare un Cubesat 3U in orbita bassa

Oltre all'obiettivo educativo di coinvolgere gli studenti in tutte le fasi della progettazione, sviluppo e verifica, PoliBaSat ha come obiettivo scientifico la dimostrazione parziale del sistema di anti-collisione proposto

ConOps (Concept of Operations)

- Ogni giorno PoliBaSat riceverà informazioni orbitali (TLE) su tutti gli oggetti previsti per un approccio ravvicinato (< 10 km)
- I TLE saranno propagate a bordo per identificare potenziali finestre di visibilità con gli oggetti e pianificare delle osservazioni
- Ad ogni opportunità identificata, PoliBaSat orienterà il suo payload per acquisire immagini dell'oggetto target
- Tutte le immagini verranno scaricate a Terra ed elaborate

CONCLUSIONI

- Gli star tracker possono trovare applicazione per implementare sistemi autonomi di anti-collisione
- Dispositivi con **piccole aperture** sono potenzialmente utili solo in eventi che coinvolgono grossi oggetti secondari (> 1 m di diametro)
- Sensori più sofisticati possono fornire costantemente misurazioni di buona qualità prima del TCA
- L'elettronica del rilevatore gioca un ruolo fondamentale, in particolare il rumore di readout

