LABORATORIO DI OPTOELETTRONICA, POLITECNICO DI BARI

SISTEMA DI ANTI-COLLISIONE AUTONOMO PER SATELLITI IN LEO

G. Campiti, G. Brunetti, C. Ciminelli

L'Impegno Italiano nel Settore dei CubeSat: Tecnologie e Missioni Future – Seconda Edizione | 2-4 Luglio 2024

INTRODUZIONE

Il numero di Manovre di Anti-Collisione (CAM) in LEO è in forte crescita

- Satelliti ESA hanno effettuato in media 3-4 CAM/anno nel 2023, mentre 2 CAM/anno nel 2022 [ESA, 2023]
- Starlink: 25k CAM nel primo semestre del 2023, un tasso raddoppiato rispetto ai precedenti 6 mesi [SpaceX, 2023]

Tuttavia.. il reale **rischio di collisione è ancora molto basso**

ESA: <u>il tempo medio tra due impatti</u> su una superficie di 30m² orbitante ad un'altitudine di 800 km è di <u>101 anni</u>, considerando detriti di dimensioni >1 cm [Siminski, 2022]

Motivo: grosse incertezze sulla posizione stimata degli oggetti al momento del Closest Approach (TCA)

PRINCIPIO

Sfruttare gli approcci ravvicinati prima del TCA per fare **osservazioni autonome** dell'oggetto secondario e conseguentemente **ridurre** la sua **incertezza posizionale**

Analisi

Ricostruiti >10,000 eventi di congiunzione reali a partire da Two-Line Elements (TLEs)

Alcuni risultati

- Oggetti a rischio di collisione in LEO hanno quasi sempre orbite molto simili → due punti di quasi-intersezione orbitale esistono
- La distanza relativa raggiunge un minimo locale una volta ogni:

$$\Delta T = \frac{T_1 \cdot T_2}{T_1 + T_2} \qquad (\text{periodi orbitali})$$

- Nel 70% delle volte, i due oggetti passeranno a meno di 100 km prima del TCA, e nel 90% delle volte a meno di 300 km
- Con un range di rilevamento di 500 km, almeno due opportunità di oltre 10 secondi esistono nel 80% dei casi
- Tecnologia **ottica** è l'unica fattibile per il sensore di bordo

*Campiti et al. "Orbital Kinematics of Conjuncting Objects and Opportunities for Autonomous Observations", Acta Astronautica, 2023, 208: 355-366

Prossime domande:

- Come sono le condizioni di visibilità durante questi incontri?
- Di quali specifiche ha bisogno il sensore?

Generazione di immagini sintetiche

Modelli del sensore						
	#	D [cm]	S [-]	FoV [deg]	σ _{rn} [e⁻/pxl]	σ _{dc} [e ⁻ /pxl/s]
~Star trackers	1	2	0.5	10×10	30	80
	2	2	0.5	20×20	30	80
	3	2	0.6	15×15	5	30
	4	2	0.6	20×20	5	30
	5	5	0.5	15×15	30	80
	6	5	0.6	20×20	5	30
	7	7.5	0.5	10×10	30	80
	8	7.5	0.5	15×15	30	80
	9	10	0.6	10×10	5	30
	10	15	0.8	10×10	3	25

Alcuni degli altri parametri:

- Bit depth: 8 bit
- **Tempo di esposizione**: 10 500 ms
- 1024×1024 pixel

Modello di oggetto secondario

- Forma: sferica
- Materiale: corpo grigio
- **Riflettività** (albedo): 0.13 0.21
- **Diametro**: 10 cm, 20 cm, 40 cm, 100, 200 cm

- Sensore puntato verso le stelle fisse
- Oggetti in transito lasciano una striscia (*streak*) nel FoV

POST-PROCESSING DELLE IMMAGINI & CALCOLO SNR

Politecnico di Bari

7

PROBABILITÀ DI RILEVAMENTO [1]

Politecnico di Bari

PROBABILITÀ DI RILEVAMENTO [2]

644 CEATTERS ICA

9

PROSSIMI STEP

POLIBASAT: MISSIONE DIMOSTRATIVA

PoliBaSat è la prima missione del Politecnico di Bari, volta a lanciare un Cubesat 3U in orbita bassa

Oltre all'obiettivo educativo di coinvolgere gli studenti in tutte le fasi della progettazione, sviluppo e verifica, PoliBaSat ha come obiettivo scientifico la **dimostrazione parziale del sistema di anti-collisione proposto**

ConOps (Concept of Operations)

- Ogni giorno PoliBaSat riceverà informazioni orbitali (TLE) su tutti gli oggetti previsti per un approccio ravvicinato (< 10 km)
- I TLE saranno propagate a bordo per identificare potenziali finestre di visibilità con gli oggetti e pianificare delle osservazioni
- Ad ogni opportunità identificata, PoliBaSat orienterà il suo payload per acquisire immagini dell'oggetto target
- Tutte le immagini verranno scaricate a Terra ed elaborate

- Sli star tracker possono trovare applicazione per implementare sistemi autonomi di anti-collisione
- Dispositivi con **piccole aperture** sono potenzialmente utili solo in eventi che coinvolgono grossi oggetti secondari (> 1 m di diametro)
- Sensori più sofisticati possono fornire costantemente misurazioni di buona qualità prima del TCA
- >> L'elettronica del rilevatore gioca un ruolo fondamentale, in particolare il rumore di readout

