Design for Climate Change with Satellites?

Present Positions

emanuele_naboni_climate

 $Environmental \ Sustainability \ Module \ - \ SOS \ School \ of \ Sustainability \ - \ with \ Mario \ Cucinella \ Since \ 2021$

Affiliated Associate Professor of Sustainable Design. Institute of Architectural Technology **The Royal Danish Academy**. Since 2010 (half time since 2022)

Associate Professor of Climate Change and Regenerative Architecture. **UNIPR** Since 2021

Visiting Professor, Norwegian University of Science and Technology, Department of Civil and Environmental Engineering. Faculty of Engineering Since 2022

Adjunct Professor, **University of New South Wales** March 2023 to October

Visiting Professor, Architectural and science researcher at **CBE UC Berkeley**, College Of Environmental Design Since 2023

Norman Foster Foundation Academic

Past Position

Invited Professor at **ETH**. Future Cities Lab Singapore 2019

Researcher at EPFL 2016, 2017

Invited Professor at Architectural Association 2013

Visiting Professor at **The University of Nottingham** 2015

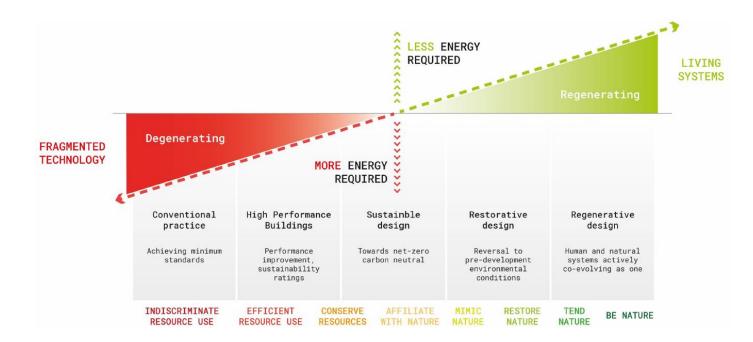
Adjunkt at **UC Berkeley**, CED, College Of Environmental Design 2012

Post Doc Rsearcher at **LBNL** 2006 - 10 + 2011

Sustainable Design Tools Development Consultant for **Autodesk** 2010 – 2012

Sustainable Design Specialist at **SOM** (Skidmore Owings and Merrill, Llp) 2006 – 2010

Sustainable Design Specialist William McDonough and Loisos + Ubbelohde 2005



Phd Building Science, **Politecnico di Milano + University of California** Awarded 2005

2021 - 23 projects: consultancies and research

What is the climatic ambition of our future design?

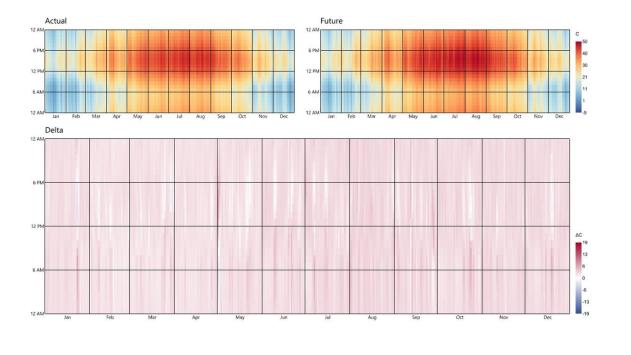
Future Research: Leveraging Climate Change for achieving Co-benefits

Ecology Increase biodiversity Urban Agriculture Restorative Green, Blue Spaces Water Flow

Health Increase Outdoor Thermal Comfort Increase Air Quality Achieve biophilia

Decarbonization

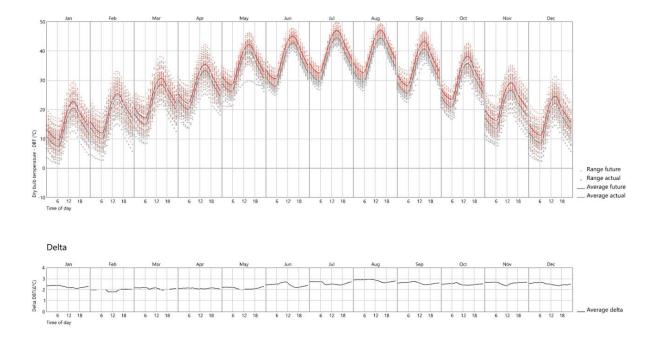
Create Microclimate for Operations Energy Positive Solutions Maximize Existing Spaces Activation



Satellites and Climate Change

Satellite Missions/Programs	Imaging Type Description	Specific Measurement	Units	Climate Change Variable	Adaptation Measures for Buildings and Urban Spaces
Orbiting Carbon Observatory-2 (OCO-2), Greenhouse Gases Observing Satellite (GOSAT)	Spectroscopy for atmospheric carbon dioxide levels.	Carbon Dioxide (CO2) Concentration	Parts per million (ppm)	Atmospheric Gases	Developing urban greenery and carbon capture technologies to reduce atmospheric CO2 levels.
Clouds and the Earth's Radiant Energy System (CERES)	Radiometry for Earth's energy budget and cloud properties.	Outgoing Longwave Radiation, Albedo	Watts per square meter (W/m²)	Earth's Energy Budget	Designing buildings and urban layouts to face new radiation charges
Global Precipitation Measurement (GPM)	Microwave imaging for precipitation patterns and intensity.	Precipitation Rate	Millimeters per hour (mm/h)	Precipitation Patterns	Enhancing urban drainage and stormwater management with greeneries and water open tanks to prevent flooding and accommodate more frequent extreme precipitation events.
Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS)	Spectral imaging for land surface temperature and vegetation health.	Land Surface Temperature, Normalized Difference Vegetation Index (NDVI)	Degrees Celsius (°C), Index (0-1)	Temperature and Vegetation Health	Utilizing systems that protect vegetation and green roofs to reduce urban heat islands and improve thermal comfort in response to rising temperatures and vegetation stress.
Soil Moisture Active Passive (SMAP)	Radar and microwave for global soil moisture.	Soil Moisture Content	Cubic meter per cubic meter (m³/m³)	Soil Moisture	Incorporating permeable surfaces and green infrastructure to enhance soil moisture retention and support urban agriculture under drought conditions.
Landsat, Sentinel-2	Optical and infrared for land use changes and deforestation.	Land Cover, Deforestation	Type, Square kilometers (km²)	Land Use Changes	Planning for resilient urban expansion and reforestation projects to counteract deforestation and support biodiversity in urban settings.

CLIMATE CHANGE ANALYSIS AIR TEMPERATURE



By 2050, there will be an increase of about 5°C compared to the current period.

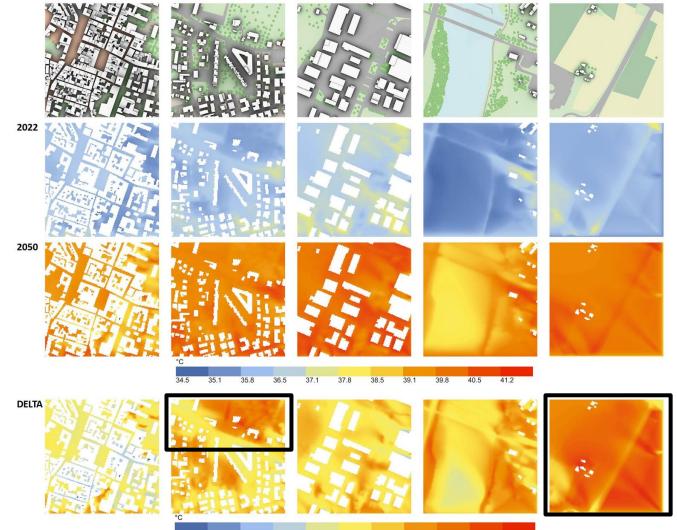
<- PAGE 9 ->

←----*→*

The average temperature increase in 2050 will be uniform across the hours of the day and will be about 1°C higher in summer than in winter.

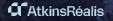
←----*→*

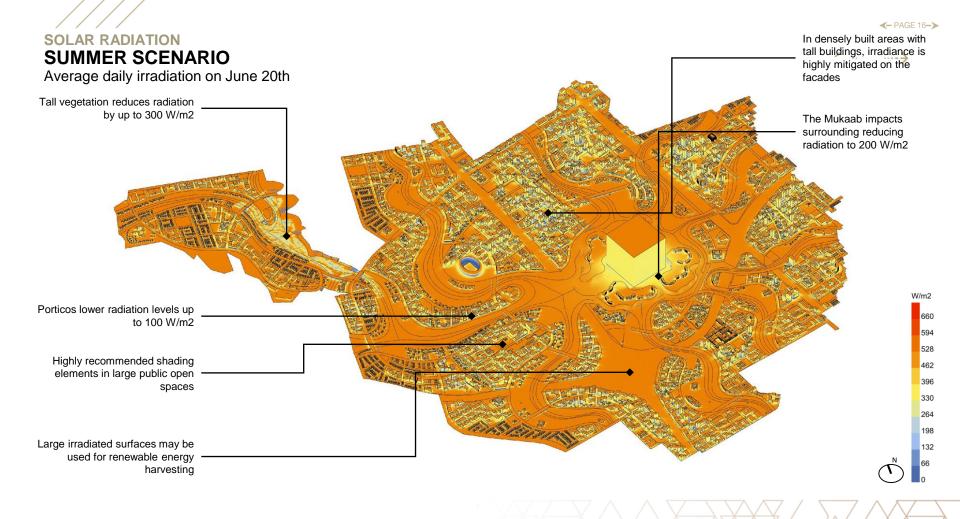
What happens to the Ecosystem? with 2 degrees more

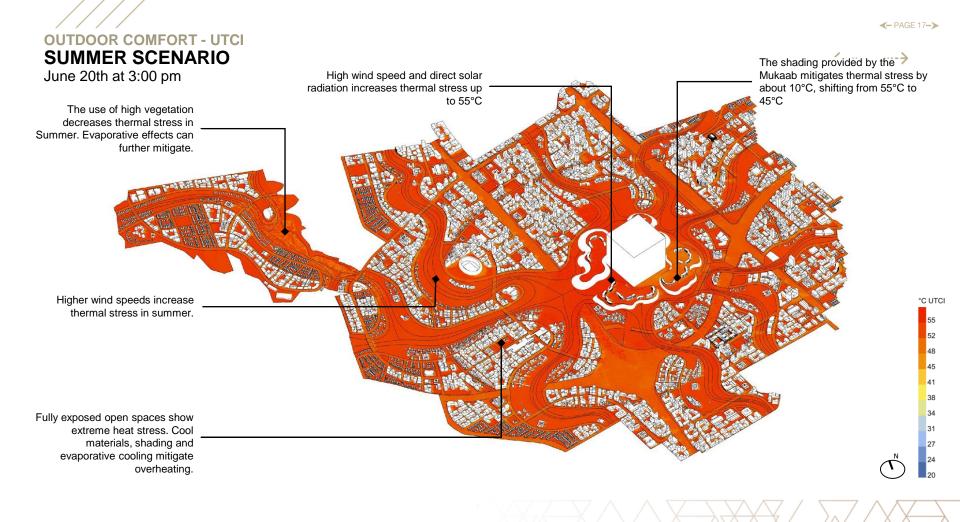

Effects of Temperature Increase on Ecosystems	Factor of Degradation
Biodiversity Loss	High
Altered Species Interactions	Moderate
Changes in Distribution and Habitat Loss	High
Increased Stress on Ecosystems	Very High
Changes in Productivity and Nutrient Cycling	High
Changes in Water Availability	Very High
Altered Phenology	Moderate
Changes in Ecosystem Resilience	High
Disruption of Ecological Processes	Very High
Increased Invasive Species	High
Altered Carbon Cycling	Moderate

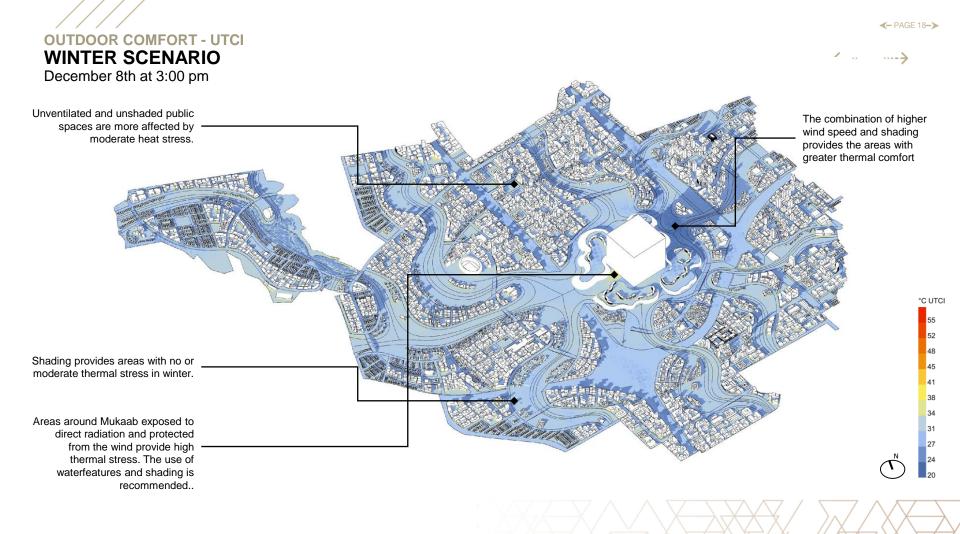
What will happen in 2050?

With Mario Cucinella Architects

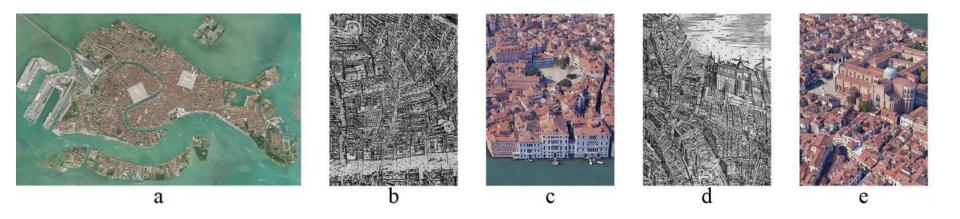

°C very strong heat stress 50.34 48.72 47.10 45.48 strong heat stress 43.86 42.25 40.63 39.01 moderate heat stress 37.39 35.77 34.15




2.24 2.44 2.63 2.83 3.03 3.23 3.43 3.63 3.83 4.03 4.23


NEW MURABBA

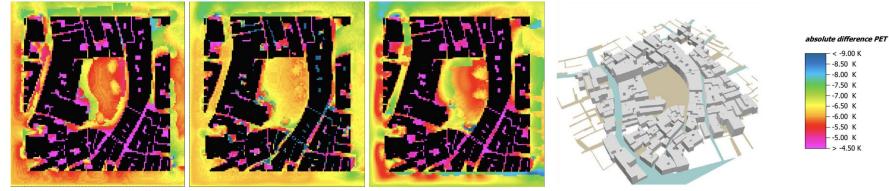
DETAILED MASTER PLAN MICROCLIMATE



Venetian Campi Resilience to Climate Change

Complex case. Geometrically and Thermodynamically

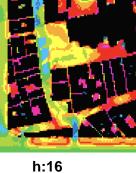
Aerial view of Venice (a); San Polo in de' Barbari illustration (1541) (b); view of San Polo (c); SS. Giovanni e Paolo in de' Barbari (1541) illustration (d); view of SS. Giovanni e Paolo (c).


Venice Microclimatic Studies 2020 + 2050 (with TU Delft)

Hotter Summer Day at 13:00

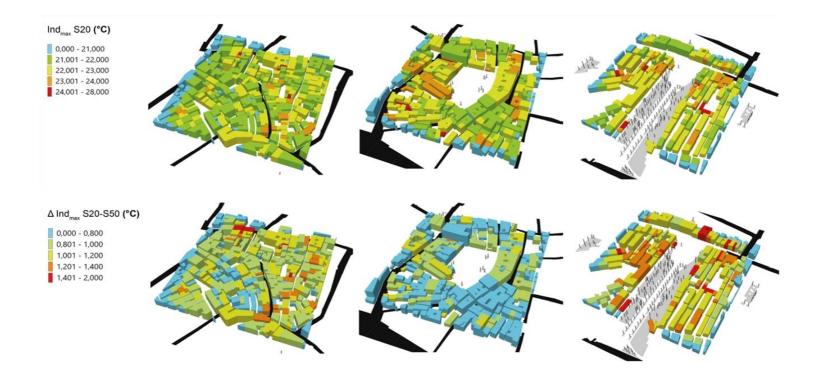
Thermal Resilience: Current (2020) and projected scenario (2050) PET delta

San Polo PET h:10


h:13

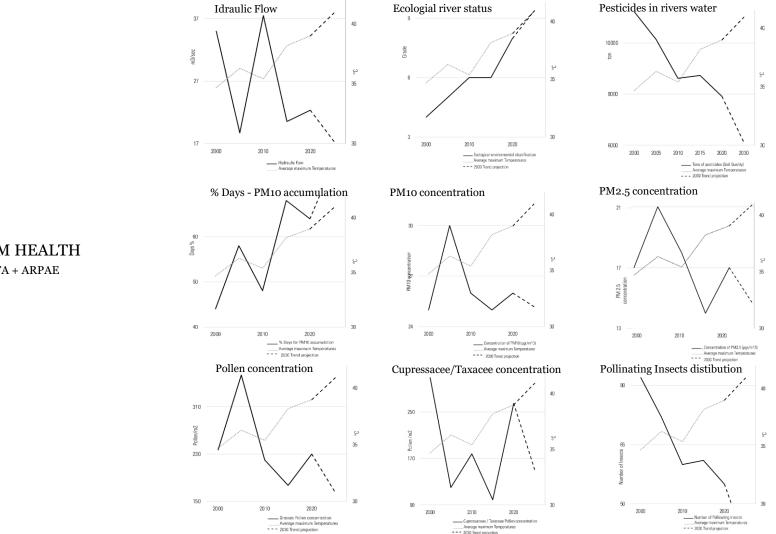
h:16

Santı Giovannı e Paolo PET h:10



Climate Resilience

average outdoor temperatures in 2050 (avg. 6°C)


the higher the urban fabric compactness, the lower the frequency of high indoor temperatures

Satellites and Ecology

Satellite Missions/Programs	Imaging Type Description	Specific Measurement	Units	Ecological Variable	Applications in Building Design and Urban Space Planning
Landsat, Sentinel- 2	Visible and near- infrared light for vegetation health and land use.	Normalized Difference Vegetation Index (NDVI), Land Cover	Index (0-1), Type	Vegetation and Land Use	Incorporating NDVI data into urban planning to enhance green infrastructure , optimizing building placement and landscaping to improve microclimates and biodiversity.
Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel- 2	Multiple spectral bands for crop health and agriculture.	Leaf Area Index (LAI), Crop Type	Index (0-1), Type	Urban Agriculture	Utilizing LAI data in the design of urban agriculture projects, integrating rooftop gardens and vertical farming into buildings to promote local food production and reduce urban heat islands.
Soil Moisture Active Passive (SMAP), Sentinel- 1	Radar and microwave for soil moisture and composition.	Soil Moisture Content, Soil Texture	Cubic meter per cubic meter (m ³ /m ³), Type	Soil Moisture and Composition	Designing water-efficient landscapes and irrigation systems for urban areas based on soil moisture data, enhancing the resilience of green spaces to drought conditions.
Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS), Landsat	Infrared for soil temperature and health.	Surface Temperature, Evapotranspiratio n	Degrees Celsius (°C), Millimeters (mm/year)	Soil Temperature and Health	Designing bio-receptive surfaces with soil temperature data.
Sentinel-2, MODIS	Visible and near- infrared for vegetation stress.	Photochemical Reflectance Index (PRI), Water Stress Indicator	Index (0-1), Index (0-1)	Vegetation Health and Stress	Managing urban vegetation health with stress indicators.

ECOSYSTEM HEALTH SATELLITE DATA + ARPAE

Microclimate Creation

	Temperature Reduction
Green Type	(°C)
Trees	2-8°C
Shrubs	1-4°C
Grass and Lawns	1-2°C
Vines and Climbers	1-3°C
Groundcover Plants	1-2°C
Urban Green Spaces	2-6°C
Rooftop Gardens	2-8°C
Vertical Gardens	1-4°C
Deciduous Trees	2-6°C
Evergreen Trees	1-4°C
Green Roofs	2-6°C
Floating Wetlands	1-3°C
Forested Areas	2-8°C
Native Plant Landscaping	1-4°C
Green Walls	1-3°C

What are the maximum tolerated temperatures?

	Maximum Effective Air Temperature (°C)
Trees	40°C and below
Shrubs	34°C
Grass and Lawns	28°C
Vines and Climbers	30°C
Groundcover Plants	28°C
Urban Green Spaces	36°C
Rooftop Gardens	38°C
Vertical Gardens	32°C
Deciduous Trees	35°C
Evergreen Trees	32°C
Green Roofs	38°C
Floating Wetlands	36°C
Forested Areas	40°C and below
Native Plant Landscaping	34°C
Green Walls	32°C

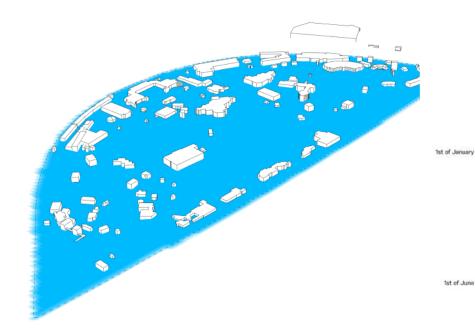
Greenery Type	Water Requirements (per year per square meter)	Rainwater Contribution in Torino (%)
Trees	300-500 liters	50-70%
Shrubs	200-400 liters	50-70%
Grass and Lawns	800-1,200 liters	80-90%
Vines and Climbers	200-400 liters	50-70%
Groundcover Plants	200-400 liters	50-70%
Urban Green Spaces	500-1,000 liters	60-80%
Rooftop Gardens	500-1,000 liters	60-80%
Vertical Gardens	500-1,000 liters	60-80%
Deciduous Trees	300-500 liters	50-70%
Evergreen Trees	300-500 liters	50-70%
Green Roofs	500-1,000 liters	60-80%
Floating Wetlands	500-800 liters	60-70%
Forested Areas	300-500 liters	50-70%
Native Plant Landscaping	300-500 liters	50-70%
Green Walls	500-1,000 liters	60-80%

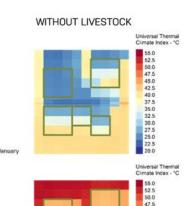
4) OUTDOOR SPACES

4.a water events as a resource to sustain microclimate

4.b don't change the design, change the program

Climate Change and Water


Ŧ Ħ Ħ Ħ -----H 冊 Ħ Ħ 15-**Tasinge Square**

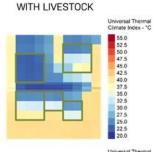


Comfort in 2050 -

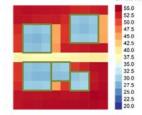
Water is essential modelling Living system is critical

45.0

42.5


40.0

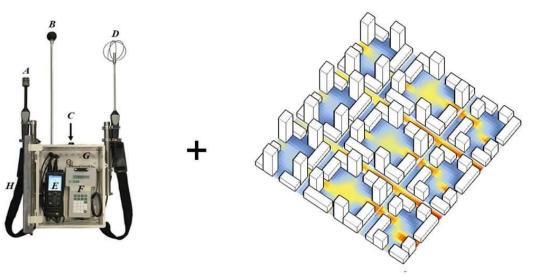
37.5

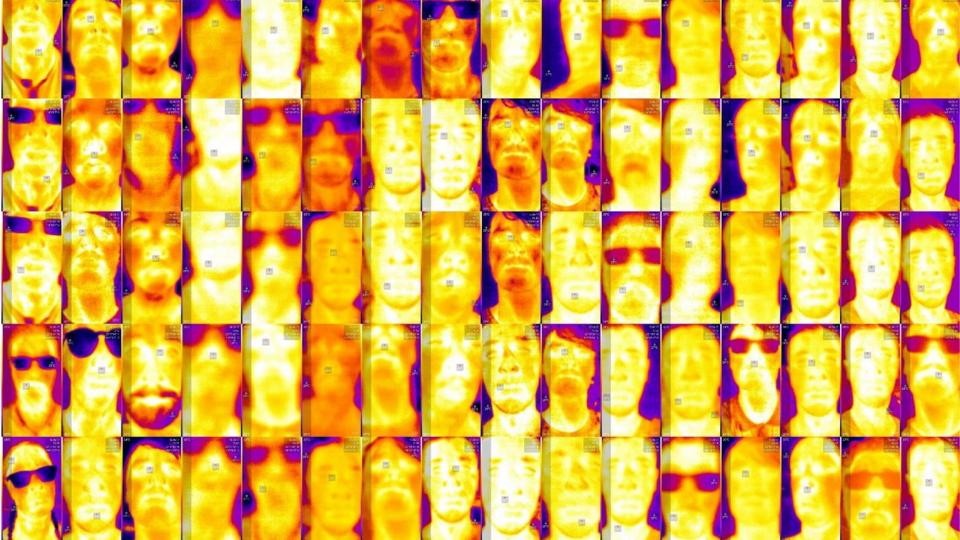

35.0

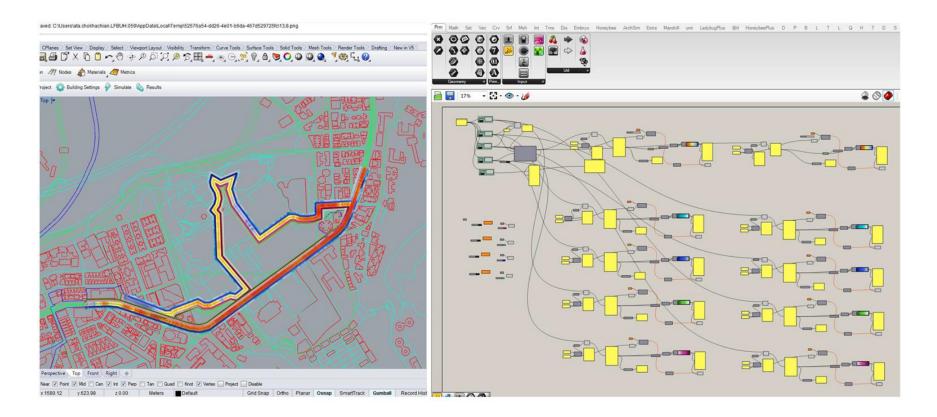
32.5

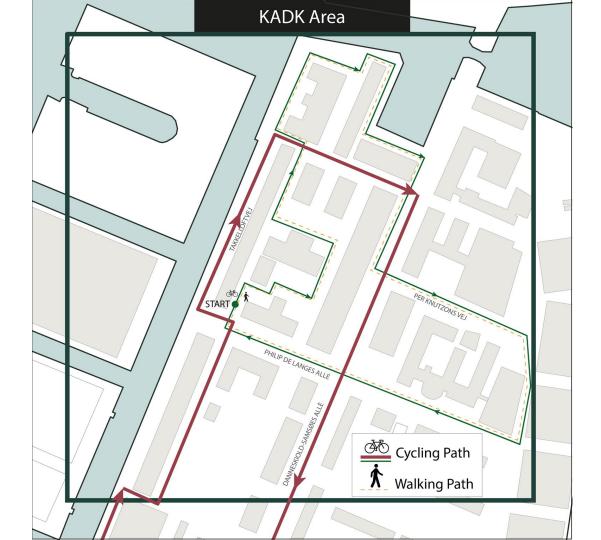
30.0 27.5 25.0 22.5 20.0

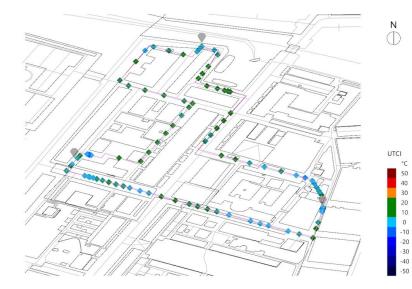
Universal Thermal Climate Index - *C

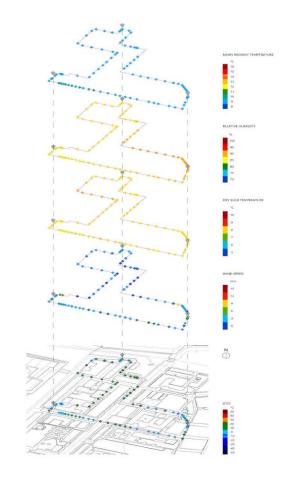


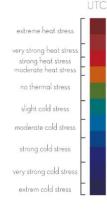

How to get information for climatic design With TU Munich and TU Delft

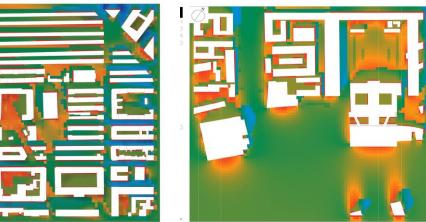

Sensing Microclimates trough combined measurements and modelling

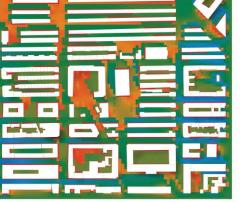


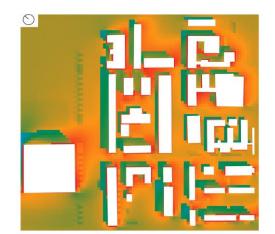



Information Visualization and Workflow




Climate Cycling in Copenhagen





UTCI (°C)

OPENING AND REFRESHMENTS KADK campus - BUILDING 68 - ENTRANCE A FRIDAY february 12th 19900

ARCHITECTURE AND EXTREME ENVIRONMENTS OPENING AND REFRESHMENTS KADK AMBUL BUILDING OF ENTRANCE A FRIDAY FEBRUARY 23rd

EXHIBIT FIRST SEMESTER WORK 2017/18

TANZANIA

OPENING AND REFRESHMENTS KADK Campus - BUILDING 68 - ENTRANCE A FRIDAY february 10th 15:00

> ARCHITECTURE AND EXTREME ENVIRONMENTS

EXHIBIT FIRST SEMESTER WORK 2016/17

Q

.... EK

Created playlists

VIEW FULL PLAYLIST

2015 THE AMAZON VIEW FULL PLAYLIST

VIEW FULL PLAYLIST

VIEW FULL PLAYLIST

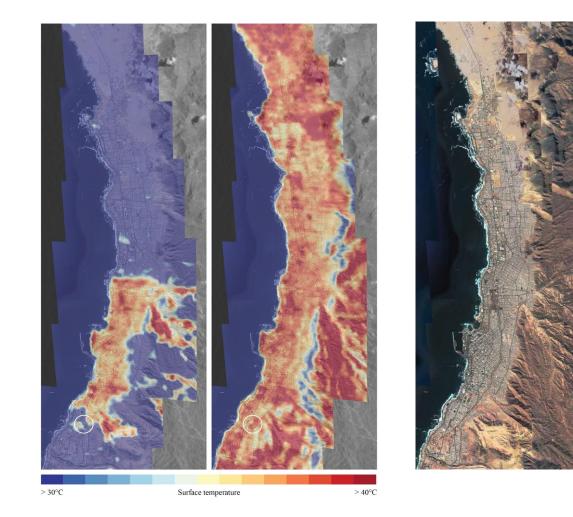
2017 TANZANIA VIEW FULL PLAYLIST

Uploads PLAY ALL

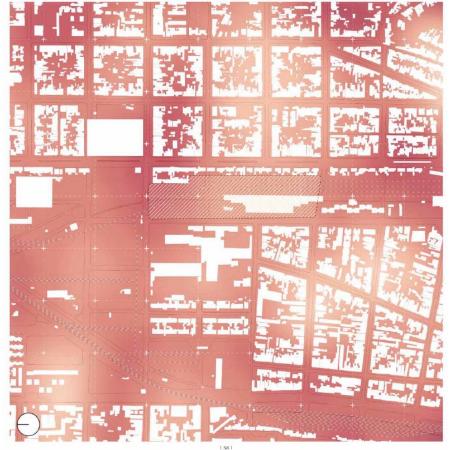
84 views • 9 months ago

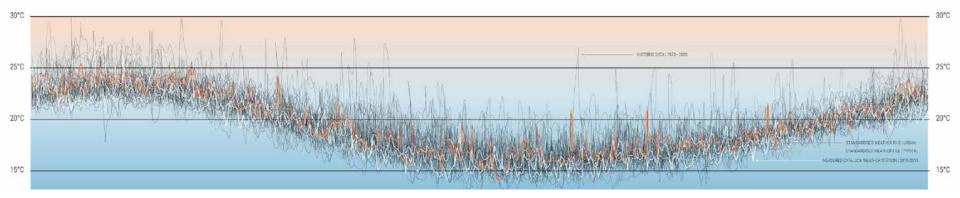
891 views • 9 months ago

91 views · 9 months ago

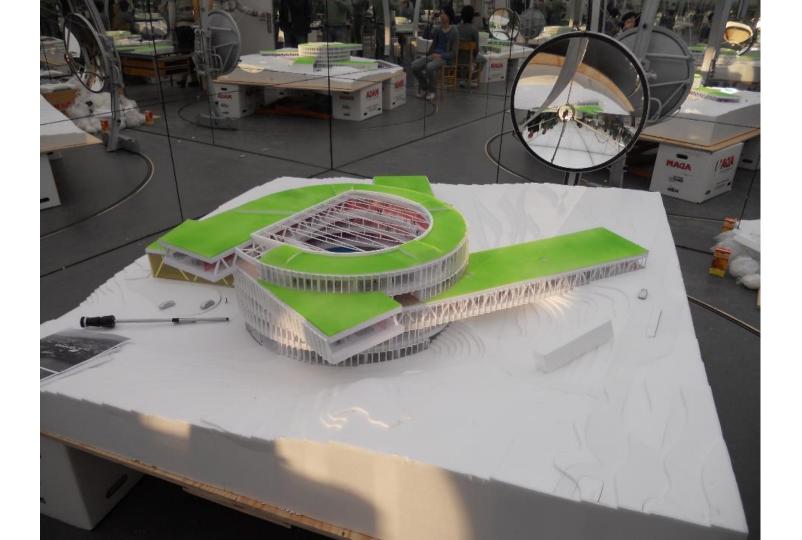

82 views • 9 months ago

Aftamagosta (Atacama Desert Chile)


THERE AND


with Aimee Desert, David Garcia

10.0



Playing with new climatic extremes BIG – FarOer Educational Center

NETSENET CENTRAL MAN

R

EXHIDIT FIRST SEMESTER WORK 2014

opening and refreshments Byg 68 - opening a FRIDAY manch 6th 15:00

OPENING AND REFRESHMENTS KADK CAMBUS BUILDING OF ENTRANCE A FRIDAY February 23rd

57

OPENING AND REFRESHMENTS KADK campus - BUILDING 68 - ENTRANCE A

THURSDAY January 31st 16:00

EXHIBIT FIRST SEMESTER WORK 2018/19

ALAS

EXHIBIT FIRST SEMESTER WORK 2017/18 TANZANIA

WORK 2015/16

.10

OPENING AND REFRESHMENTS KADK campus-BUILDING 68-ENTRANCE A FRIDAY february 10th 15:00

EXHIBIT FIRST SEMESTER WORK 2016/17

OPENING AND REFRESHMENTS KADK compus-BUILDING 68 - ENTRANCE A FRIDAY february 12th

ARCHITECTURE AND EXTREME ENVIRONMENTS OPENING AND REFRESHMENTS KADK Campus - BUILDING 58 - ENTRANCE A FRIDAY february 10th 15:00

> ARCHITECTURE AND EXTREME ENVIRONMENTS

EXHIBIT FIRST SEMESTER WORK 2016/17

Q

.... EK

Created playlists

VIEW FULL PLAYLIST

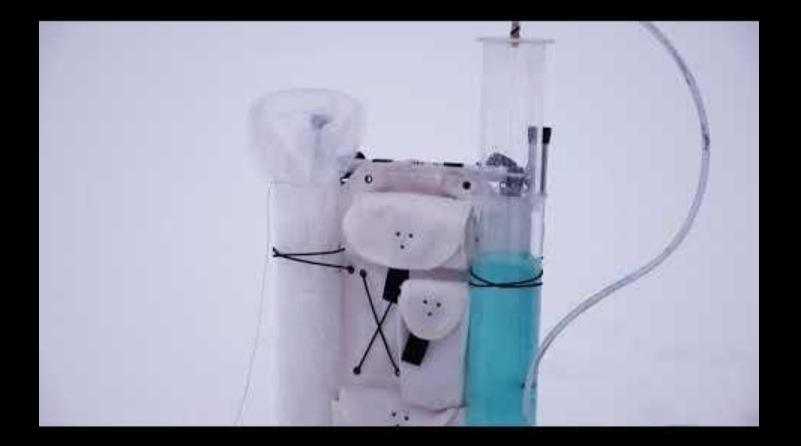
2015 THE AMAZON VIEW FULL PLAYLIST

VIEW FULL PLAYLIST

VIEW FULL PLAYLIST

2017 TANZANIA VIEW FULL PLAYLIST

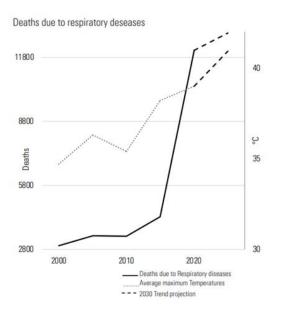
Uploads PLAY ALL

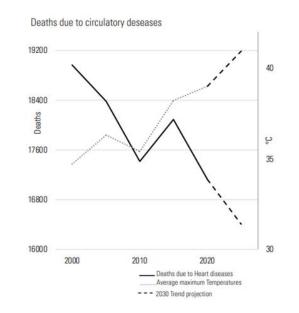

84 views • 9 months ago

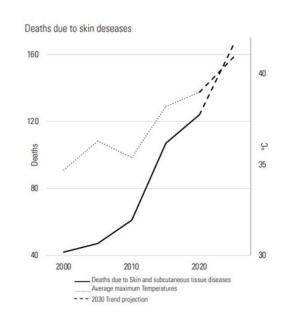
891 views • 9 months ago

91 views · 9 months ago

82 views • 9 months ago




Satellites and Health


Satellite Missions/Programs	Imaging Type Description	Specific Measurement	Units	Outdoor Comfort Variable	Applications in Urban Planning and Building Design
Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)	Infrared for urban heat islands and evapotranspiratio n.	Surface Temperature, Evapotranspiration	Degrees Celsius (°C), Millimeters (mm/year)	Urban Heat Islands	Identifying hot spots for targeted cooling strategies in urban areas.
Clouds and the Earth's Radiant Energy System (CERES)	Radiometry for sunlight exposure and cloud cover.	Sunlight Exposure, Cloud Cover	Watts per square meter (W/m ²), Percentage	Sunlight and Cloud Cover	Optimizing building orientation and shading for sunlight control.
Orbiting Carbon Observatory-2 (OCO-2)	Spectroscopy for atmospheric pollutants and CO2 levels.	Carbon Dioxide (CO2) Concentration, Air Quality	Parts per million (ppm), Index	Air Quality	Implementing pollution reduction strategies for healthier urban environments.

Human Health

Parametric Modelling

EPFL Campus

Complex case. Geometrically and Thermodynamically

Energy Flows and Climate Change Cisbat 2018

:

Wh/m³

6

0,01 -3.95

-7.91 -11.86 -15.82

Citysim - Surface Temperature Date: 19-08 Time: 15:00

83,42

66.39 49.37

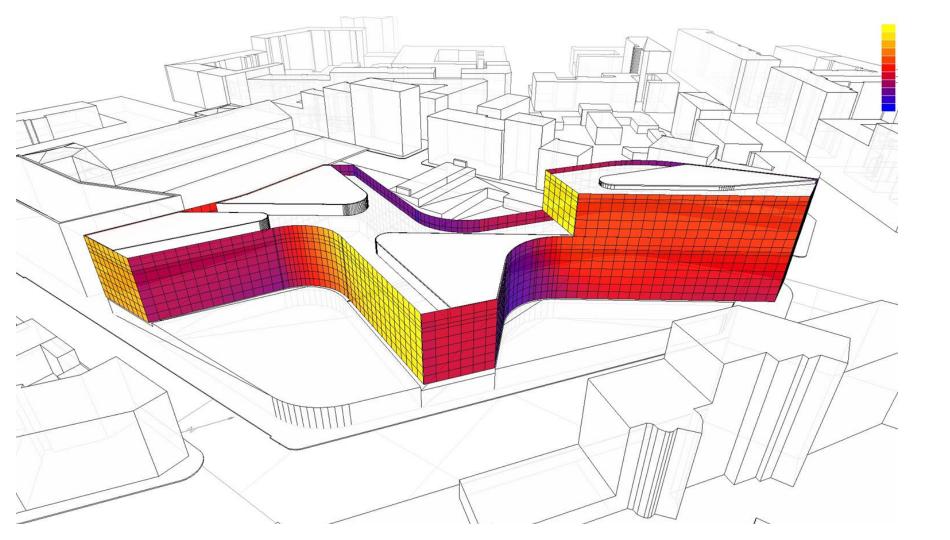
32.34 15,32 : 6

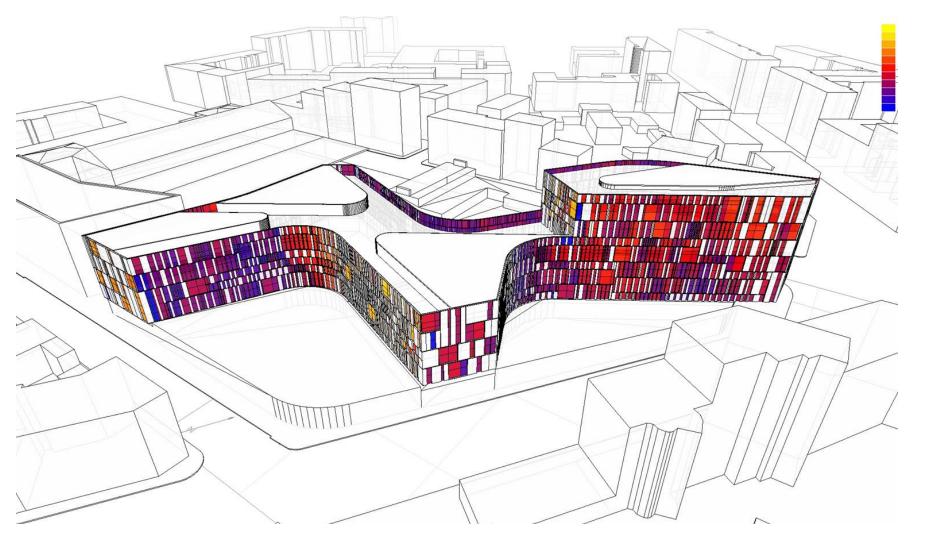
: 6

°C

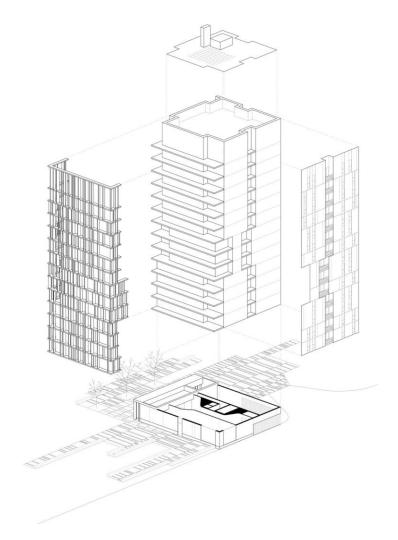
Issue of Surfaces

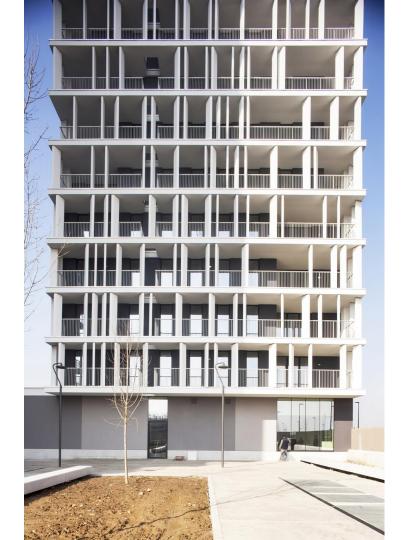
	Current Avg.			
	Summer Temp.	Projected Temp. in 2050		
	(°C) Exposed to	(°C) Under RCP 8.5		
Material Type	Sunlight	Scenario		
Asphalt	50 - 70	55 - 80		
Concrete	30 - 50	35 - 60		
Brick	30 - 50	35 - 60		
Steel	40 - 60	45 - 70		
Sand	35 - 55	40 - 65		
Soil	25 - 45	30 - 55		
Grass	20 - 35	25 - 45		
Wood	30 - 50	35 - 60		



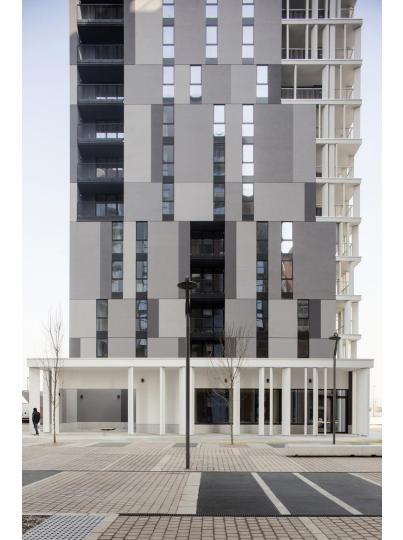

Issue with Insulation in Summer Daytime at 14 (peak)

Season	Temp. in Lausanne Now (°C at 14:00)	Isolated Material Now (°C at 14:00)	Non-Isolated Material Now (°C at 14:00)	Outdoor Temp. in Lausanne in 2050 (°C at 14:00)		Non-Isolated Material in 2050 (°C at 14:00)
Winter	2 - 6	2 - 4	1 - 3	4 - 8	4 - 6	3 - 5
Spring	10 - 16	12 - 17	11 - 15	12 - 20	14 - 21	13 - 19
Summer	22 - 30	26 - 34	24 - 32	27 - 35	31 - 40	28 - 34
Autumn	12 - 18	13 - 19	12 - 17	14 - 21	16 - 23	15 - 21





Ever Changing Thermal and Ligth Conditions



Decarbonization

Satellites and Decarbonization

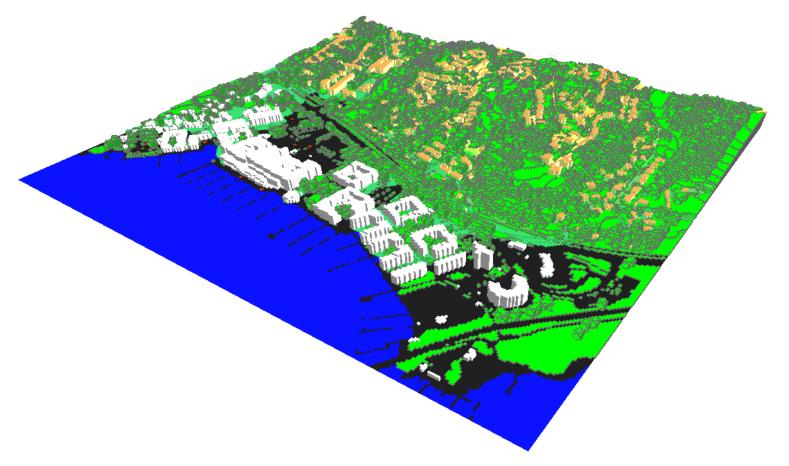
Satellite Missions/Programs	Imaging Type Description	Specific Measurement	Units	Decarbonization Focus	Applications in Decarbonization of Spaces and Buildings
Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat	Spectral imaging for land use and albedo.	Albedo, Land Cover Changes	Percentage, Type	Operational Energy	Designing urban layouts and building orientations that maximize natural lighting and heating, reducing the need for artificial climate control and lowering energy consumption.
Soil Moisture Active Passive (SMAP), Sentinel-1	Radar and microwave for soil moisture.	Soil Moisture Content	Cubic meter per cubic meter (m ³ /m ³)	Decarbonization	Informing the selection of sustainable landscaping and green infrastructure materials based on local soil conditions to enhance carbon sequestration in urban environments.
Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS)	Infrared for evapotranspiration and thermal properties.	Surface Temperature, Evapotranspiration	Degrees Celsius (°C), Millimeters (mm/year)	Operational Energy	Guiding the correct use of materials in building design to naturally regulate temperature, reducing the need for mechanical heating and cooling.
Orbiting Carbon Observatory-2 (OCO- 2), Greenhouse Gases Observing Satellite (GOSAT)	Spectroscopy for atmospheric CO2 concentration.	Carbon Dioxide (CO2) Concentration	Parts per million (ppm)	Atmospheric Gases (CO2 levels)	Developing carbon-absorbing building materials and green spaces, designing urban forests and parks as carbon sinks to mitigate CO2 levels, informed by atmospheric CO2 data.

Gotemburg Climate Adaptation Plan. With Antonello di Nunzio, Graziano Marchesini

topographical influences

A DOOL

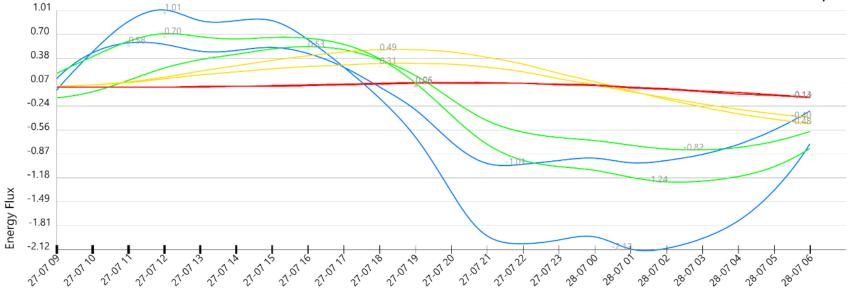
modelling of large water bodies


large forests

newer buildings

Stenungsund Climate Adaptation Plan

Microclimate Creation


small decidous decidous conifer Summer scenario 27.07.2018 15.00

Summer scenario 27.07.2050 15.00

Potential Air Temperature (°C) Building: Temperature of building (inside) (°C) Air Temperature at Vegetation (°C)

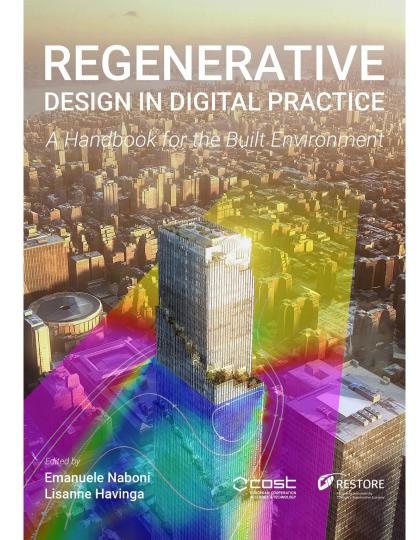
Indoor building temperature

Summer 2018 Energy Flux FROM 27 JUL 9:00 TO 28 JUL 6:00

● 81 ● 697 ● 688 ● 603 ● 543 ● 453 ● 447 ● 152 ▲ MAX ▼ MIN

Takeouts

From controlling climate change, to play with it


Expanding targets to support ecology, decarbonization and health implies of of Satellites

(Living) Materiality and Forms / Satellites

Urban and Building Metabolism / Satellites

Time for better integration macro - micro

Solutions are yet to be found, time for multi-domain collaborations

download the open access book: go to *ResearchGate* go to Emanuele Naboni

Let's be in touch!

instagram: emanuele_naboni_climate

or email: emanuele.naboni@gmail.com