

Il downstream nazionale tra presente e futuro:

un percorso condiviso con la comunità degli utenti

Stima delle proprietà del suolo d'interesse agronomico dal telerilevamento iperspettrale: il progetto TEHRA

> Raffaele Casa (DAFNE, Università della Tuscia)

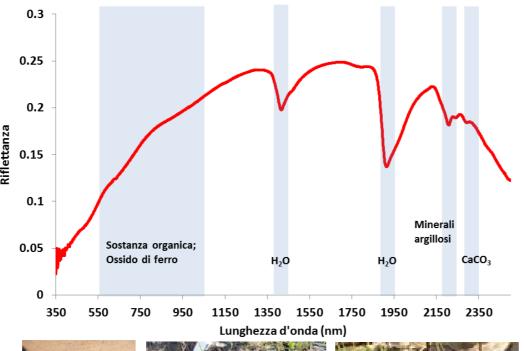
> S.Priori¹, L.Marrone¹, K. Misbah¹, S.Pignatti², S.Mirzaei², S.Pascucci², A.Tricomi³, R.Bruno³,

¹DAFNE, Università della Tuscia ² CNR-IMAA ³ e-GEOS ⁴Università La Sapienza

Spettroscopia di imaging dei suoli agricoli

Importanza

- Migliore conoscenza della variabilità spaziale dei suoli agricoli
- Pratiche agronomiche di precisione (semina, irrigazione, concimazione)
- Uso più sostenibile dei suoli
- Conformità alle politiche agro-ambientali (PAC), ad esempio il sequestro del carbonio nei suoli agricoli



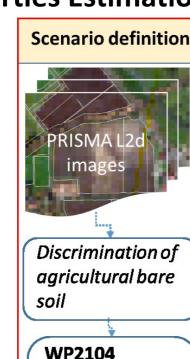
Opportunità

- Aumento della disponibilità di dati di spettroscopia di immagini satellitari: PRISMA, EnMAP, ...
- Verso un monitoraggio iperspettrale satellitare operativo: ESA CHIME, NASA SBG
- Osservazione ripetuta degli stessi campi agricoli: variabilità temporale della riflettanza superficiale del suolo

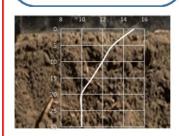
Problematiche

- Osservazione della superficie del suolo
- ☐ Solo se suolo nudo visibile
- ☐ Copertura vegetale
- ☐ Residui colturali
- Rugosità (lavorazione del terreno)
- Soil crusting
- ☐ Umidità del suolo
- Mancanza di modelli fisici

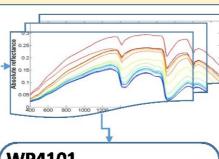
- TEHRA affronta le principali problematiche nell'uso operativo della spettroscopia di imaging satellitare in agricoltura:
- Scenario di applicabilità
- Pre-elaborazione e pre-trattamento spettrale, hypersharpening
- Generalizzazione di modelli di regressione multivariata e machine learning
- Strategie CAL/VAL



Topsoil properties vertical variation assessment and modelling



Pre-processing



WP4101

Assessment of methodologies for spectral pre-treatment

WP3102

Spectral feature analysis for crop residues and stoniness

WP5102

Physically based soil moisture estimation for data normalization

WP5101

Hyper sharpening

Development of soil properties retrieval algorithms

WP3101

Development of spectral feature analysis methods

WP4102

Development of multivariate regression methods

WP6102

Machine learning benchmarking analysis

WP6103

Machine learning model development

WP2102

Synergy with multitemporal data

WP2103

Data fusion with proximal soil mapping

Generalization

WP6101

Assessment of soil spectral libraries

WP2101

Generalisation based on spectral libraries and standards

CAL/VAL activities

WP1102

Validation Strategies and **Products Assessment**

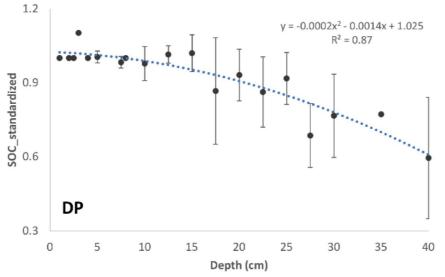
Valutazione e modellazione della variazione verticale di proprietà del suolo: carbonio organico

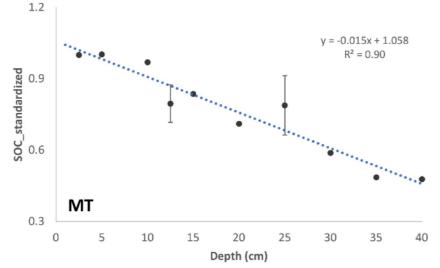
DP: aratura con inversione strato

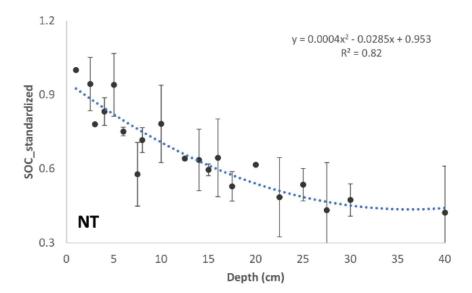
SUB: scarificatura senza inversione

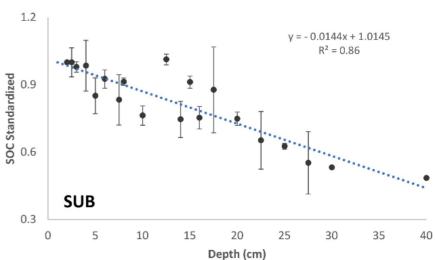
MT: Minima lavorazione

NT: No-till semina su sodo







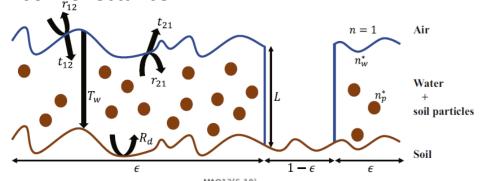


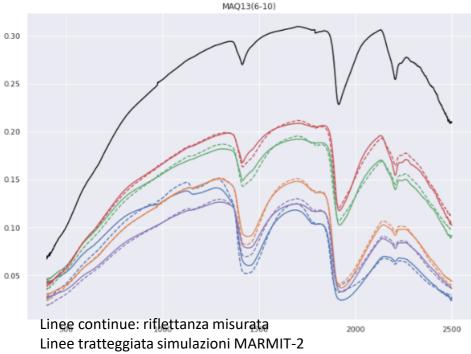
Priori, S., Zanini, M., Falcioni, V., Casa, R. 2024. Topsoil vertical gradient in different tillage systems: An analytical review. *Soil and Tillage Research*. DOI: 10.1016/j.still.2023.105947 236,105947

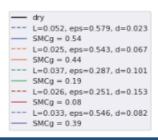
ASI Downstream Workshop, 14/12/2023

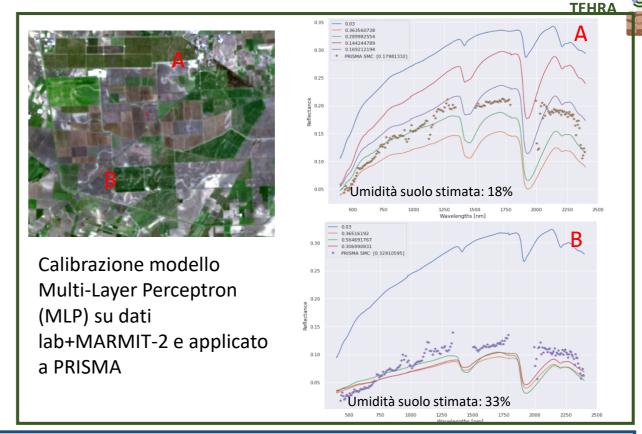
Stima dell'umidità del suolo da PRISMA

MARMIT-2: a multilayer radiative transfer model of soil reflectance

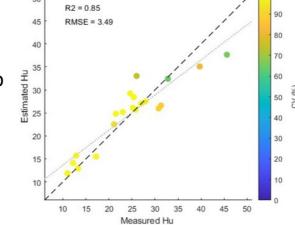




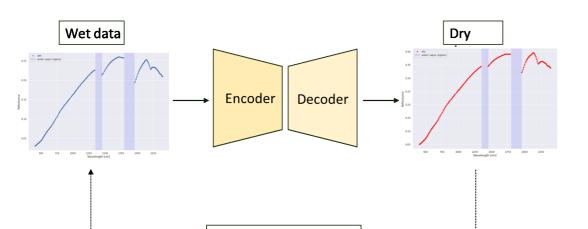




Calibrazione modello Gaussian Process Regression su dati lab con Active learning dati sensori umidità suolo su dati PRISMA



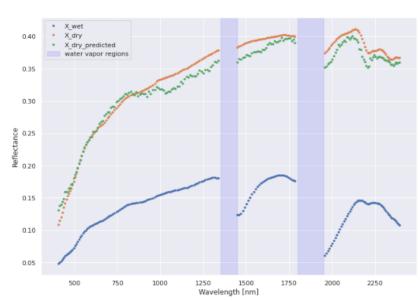
Stimare spettro suolo asciutto da umido sfruttando modello MARMIT-2

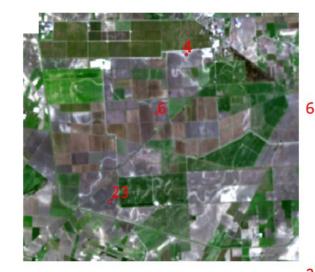


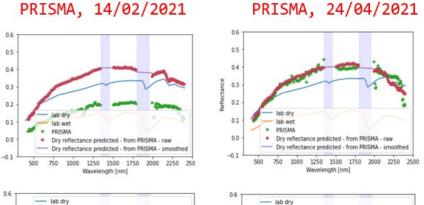
MARMIT-2

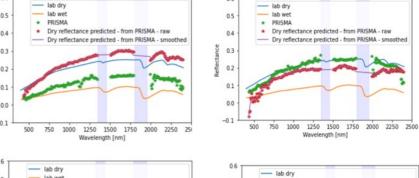
Gli autoencoder sono una particolare classe di reti neurali il cui obiettivo principale è quello di apprendere rappresentazioni robuste di dati complessi

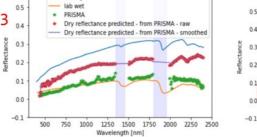
Il modello è stato addestrato su SSL Maccarese, con l'aggiunta di ulteriori campioni grazie all'inversione di MARMIT-2. Jolanda SSL è stato messo da parte per essere utilizzato per testare il modello (MAE: 0.04469, MSE: 0.00317, CS: 0.98).

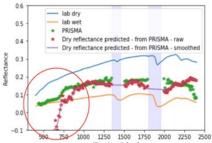










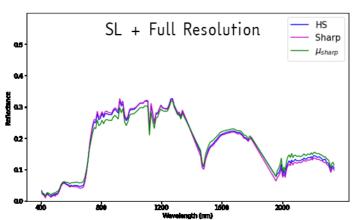


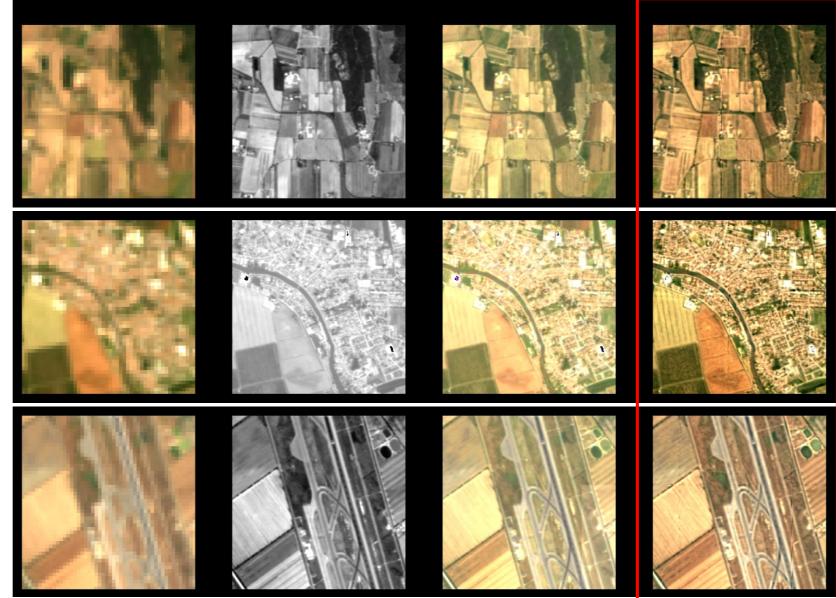
Hypersharpening: immagini iperspettrali con 5 m di risoluzione spaziale

- ☐ Sfruttare la banda pancromatica PRISMA a 5 m
- ☐ Approccio basato su Deep Learning e transfer learning

<u>Steps</u>

- Generazione dataset sintetico da AVIRIS-NG ricampionato a bande PRISMA e 5 e 30 m GSD
- 2. Traning supervisionato con dataset sintetico (SUP)
- Successivo training non supervisionato con dati reali PRISMA full-resolution (SUP+FR)

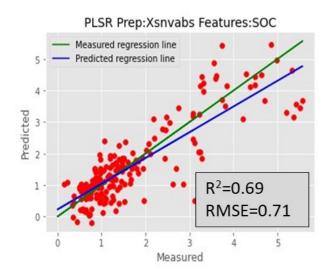




Scelta pre-trattamenti spettrali ed algoritmo di stima delle variabili

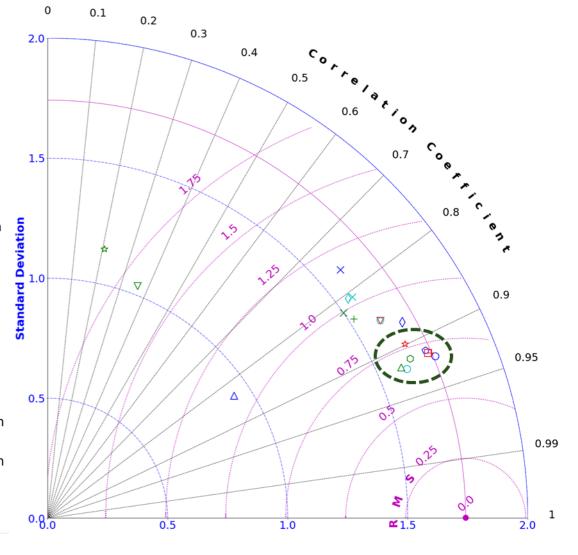
Pre-trattamenti spettrali

- Abs=log10(1/R) riflettanza ad assorbanza
- DER derivata 1a
- SG= Savitzky-Golay
- SNV= standard normal variate

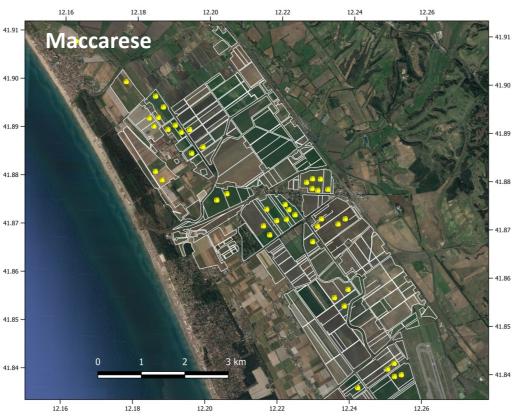


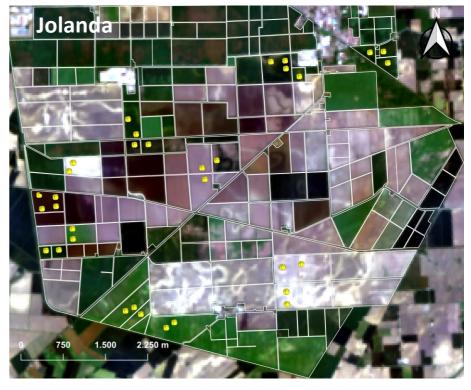
- O Absol02-Partial Least Square Regression
- X Abso|07-Cubist
- ♦ DER|02-Partial Least Square Regression
- △ DER|07-Cubist
- MF|07-Cubist
- + original|02-Partial Least Square Regression
- original|07-Cubist
- ☐ SG0|02-Partial Least Square Regression
- SG0|07-Cubist
- ∇ SG0_det_bas|02-Partial Least Square Regression

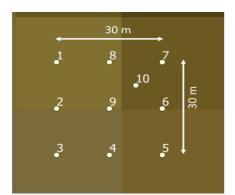
- + SG1abso|07-Cubist
- imes SG2abso|02-Partial Least Square Regression
- ☐ SG2abso|07-Cubist
- \triangle snvabs|02-Partial Least Square Regression
- ∇ snvabs|07-Cubist
- snvrefl|02-Partial Least Square Regression
- ☆ snvrefl|07-Cubist
- snv_SG1_abs|02-Partial Least Square Regression
- x snv_SG1_abs|07-Cubist
- ♦ snv_SG2_abs|02-Partial Least Square Regression
- △ snv_SG2_abs|07-Cubist
- zangf_br|07-Cubist



Strategia di CAL/VAL







- Campionamento 0-10 cm
- ESU 30x30 m (PRISMA pixel)
- Analisi in laboratorio
- Totale 105 ESU

clay, sand, silt method by sieving and sedimentation

Soil Organic Carbon (SOC) Walkley-Black

Calcium carbonates (CaCO₃)

pH 1:2.5 soil H₂O dispersion **TELAVIV** אוניברסיטת **UNIVERSITY**

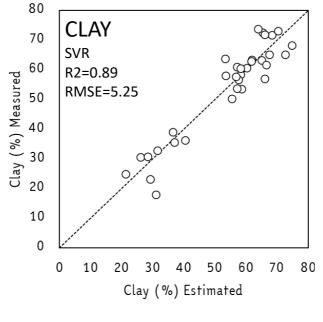
ASI Downstream Worksho,

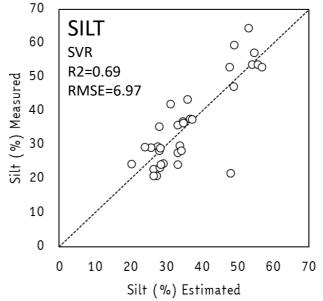
gas-volumetric method

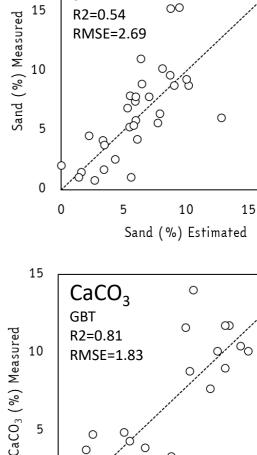
Calibrazione algoritmi di regressione Machine Learning su dati PRISMA

20

Algorithm name		
Bagging trees	Gradient Boosting/Bo osted Trees (GBT)	Random Forest (RF)
Boosting trees	Kernel ridge Regression	Regression tree
Canonical Correlation Forests (CCF)	Kernel signal to noise ratio	Regularized least- squares regression
Elastic Net regression (EN)	Partial least squares regression (PLSR)	Relevance vector Machine
Gaussian Processes Regression (GPR)	Principal components regression	Support Vector Regression (SVR)
Twin gaussian process	Weighted k- nearest neighbors regression	

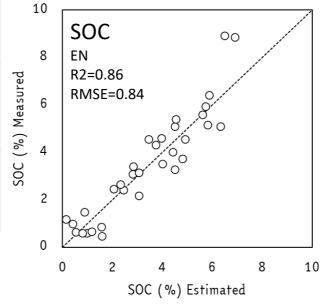


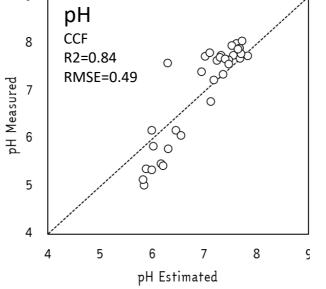


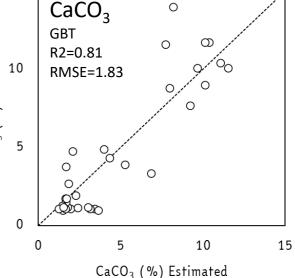


SAND

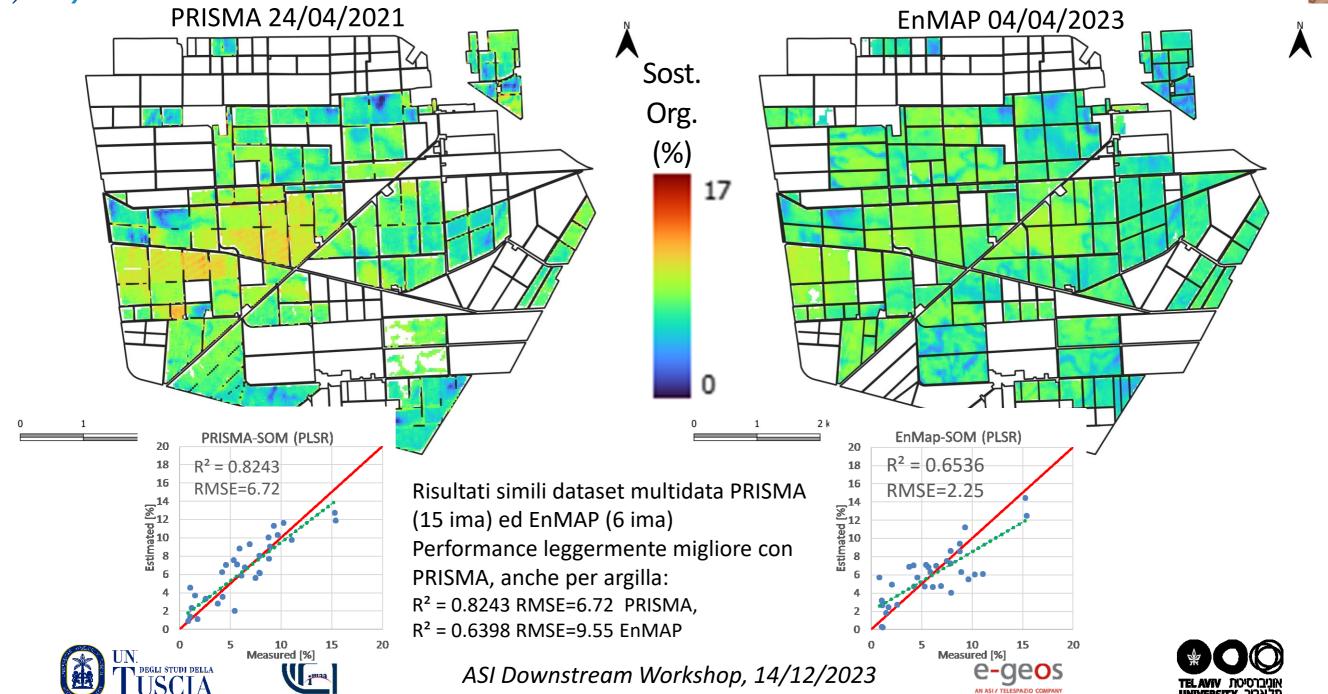
SVR







Mappatura proprietà del suolo: sostanza organica



TEHRA: conclusioni e prospettive

Il progetto TEHRA mira a contribuire allo sviluppo di metodi e algoritmi ed alla sperimentazione di diverse metodologie di stima delle proprietà del suolo d'interesse agronomico.
Test svolti con PRISMA hanno fornito risultati migliori rispetto a Sentinel-2 e Landsat-8 per la stima di argilla sabbia e SOC (Mzid et al., Remote Sens. 2022, 14, 714. https://doi.org/10.3390/).
Abbiamo osservato che con PRISMA ed EnMAP un approccio multi-data funziona meglio di un approccio ad immagine singola.
Durante il progetto TEHRA sono stati messi a punto metodi per affrontare l'effetto dell'umidità del suolo, de residui colturali e per l'hypersharpening delle immagini da 30 a 5 m di risoluzione
Sono stati sperimentati molti metodi di stima principalmente basati su algoritmi di regressione non parametrica lineare e non-lineare (machine learning)
Sono in corso di test metodologie di generalizzazione dei modelli di stima basati su librerie spettrali acquisite in laboratorio.

