Workshop "CMB Day 2", ASI, 16-18 October 2023

Cosmic Birefringence: How Our Universe May Violate Left-Right Symmetry

Margherita Lembo

University of Ferrara

What is (Cosmic) Birefringence?

"Birefringence" refers generically to the fact that wave normal modes propagate at different velocities.

In the **cosmological literature**, the term "cosmic birefringence" describes the specific case of different propagation velocity of circular polarization states (**rotation of the linear polarization plane**).

If the Universe is filled with a parity-violating pseudoscalar field (axion-like particles, ALP)

$$\phi(-\overrightarrow{n}) = -\phi(\overrightarrow{n}),$$

coupled to the electromagnetic tensor via a Chern-Simons coupling

 $\frac{1}{4}g_{\phi}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$

it makes the phase velocities right- and left-handed helicity states of photons differ.

Dispersion relation of left/right polarization are modified

Ni (1977), Turner&Widrow (1988), Carroll, Field, Jackiw (1990), Carroll&Field (1991).....

$$\omega_{L/R}^2 = k^2 \left| 1 \pm \frac{g}{k} \dot{\phi} \right|$$

This results in a rotation of linear polarization plane by an angle

$$\alpha(\vec{n}) = -\frac{g_{\phi}}{2} \int dt \frac{\partial \phi}{\partial t} = \frac{g_{\phi}}{2} \Delta$$

ALP causes Cosmic Birefringence

Ni (1977), Turner&Widrow (1988), Carroll, Field, Jackiw (1990), Carroll&Field (1991).....

Φ

This results in a rotation of linear polarization plane by an angle

$$\alpha(\vec{n}) = -\frac{g_{\phi}}{2} \int dt \frac{\partial \phi}{\partial t} = \frac{g_{\phi}}{2} \Delta \phi$$

ALP causes Cosmic Birefringence

Ni (1977), Turner&Widrow (1988), Carroll, Field, Jackiw (1990), Carroll&Field (1991).....

We can constrain ALP with a source that is: **Inearly polarized** ✓ very far away

This results in a rotation of linear polarization plane by an angle

$$\alpha(\vec{n}) = -\frac{g_{\phi}}{2} \int dt \frac{\partial \phi}{\partial t} = \frac{g_{\phi}}{2} \Delta$$

ALP causes Cosmic Birefringence

Ni (1977), Turner&Widrow (1988), Carroll, Field, Jackiw (1990), Carroll&Field (1991).....

Φ

We can constrain ALP with a southat is: W **Ine** *⊠*very far away

Axions motivated by strong CP problem

Peccei-Quinn theory in 1977

Axions motivated by strong CP problem

Peccei-Quinn theory in 1977 The dark side of the Universe is obscure

DARK **ENERGY**

5%

69%

9

Axions motivated by strong CP problem

Peccei-Quinn theory in 1977 The dark side of the Universe is obscure

DARK ENERGY

5%

69%

9

ALPs motivated by String Axiverse

ALPs as **Dark Energy**: $m_{\phi} \lesssim H_0 \sim 10^{-33} \text{ eV}$ ALPs as **Dark Matter**: $m_{\phi} \gtrsim 10^{-27} \text{ eV}$

Axions motivated by strong CP problem

The dark side of the Universe is obscure

Bonus Motivations

Parity symmetry is often broken:

- ✓ weak nuclear force
- ✓ DNA
- ✓ Right(left)-handed people

√ ...

Why this symmetry should be preserved at *largest* scales?

ALPs motivated by String Axiverse

ALPs as **Dark Energy**: $m_{\phi} \lesssim H_0 \sim 10^{-33} \text{ eV}$ ALPs as **Dark Matter**: $m_{\phi} \gtrsim 10^{-27} \text{ eV}$

Why this symmetry should be preserved at *largest* scales?

...

The da Bonus Motivations - Why "today"? hv

The precise measurement over a wide range of scales of **CMB polarisation** is recognised as the **next step** in the observation of the Cosmic Microwave Background radiation:

- LiteBIRD will be launched at the beginning of 2030s;
- The Simons Observatory (**SO**) is taking data NOW; CMB-Stage IV (**S4**) will start at the end of 2020s.

11

First works

Carroll+(1990,1991) derived constraints on α_0 from 10 high-redshift radio galaxies, yielding. $\alpha_0 = -0.6^{\circ} \pm 1.5^{\circ}$. Komatsu+ (2008) report limit from the WMAP5 (combining low- ℓ and high- ℓ dataset) as $\alpha_0 = -1.7^{\circ} \pm 2.1^{\circ}$. Xia+(2008) using both WMAP5 and BOOMERanG 2003 $\alpha_0 = -2.6^{\circ} \pm 1.9^{\circ}$. Wu+(2009) measure $\alpha_0 = 0.55^\circ \pm 0.82^\circ$ (rand) $\pm 0.5^\circ$ (syst) using QUaD's 100 and 150 GHz TB and EB spectra over the multipole range $200 < \ell < 2000.$

Anisotropic Rotation

Kamionkowski (2010) sets an upper bound on the variance of $C_{\ell}^{\alpha\alpha}$ using AGN, $<\alpha^2 > 1/2 \leq 3.7^\circ$. Gluscevic, Hanson, Kamionkowski and Hirata (2012) derived the first CMB constraint on $C_{\ell}^{\alpha\alpha}$ for multiples between L = 0 and L = 512 with WMAP-7, finding consistency with o at each multiple, within 3σ .

Uniform Rotation

Cosmic or Instrumental?

or

Cosmic birefringence rotates CMB linear polarization plane by

 α angle

Miscalibration of detector's polarization angle β : degenerate with cosmic birefringence angle α Krachmalnicoff+(2022) - LiteBIRD collab.

Cosmic or Instrumental?

or

Cosmic birefringence rotates CMB linear polarization plane by

 α angle

Minami+2019

The sky contains: CMB+Galactic foreground emission. Photons of the **foreground emission do not travel for a long distance**, receiving only a negligible amount of α .

We can **assume** that the **foreground polarization** is **rotated only by** the **miscalibration angle** β .

Miscalibration of detector's polarization angle β : degenerate with cosmic birefringence angle α Krachmalnicoff+(2022) - LiteBIRD collab.

15

Constraining isotropic birefringence angle

Minami&Komatsu(2020)	Diego-Palazuelos+(2022)) Es
PR3	PR4	Plo
$\alpha_0 = (0.35 \pm 0.14)^{\circ}$	$lpha_0 = (0.30 \pm 0.11)^\circ$	α_0

- Planck (+WMAP) maps (cross-correlatating different frequency maps)
- Applying masks (3 type: bad pixels, bright CO emission, bright point sources) •
- Maps to Spectra with NaMaster
- Estimation of β and $\beta + \alpha_0$ maximizing the log-likelihood function

skilt&Komatsu(2022) anck + WMAP $_0 = 0.342^{\circ + 0.094^{\circ}}_{-0.091^{\circ}}$

Constraining isotropic birefringence angle

Bortolami, Billi, Gruppuso, Natoli, Pagano (2022)

case	$\alpha [deg]$
PR3 Commander	$0.27 \pm 0.05 \text{ (stat)} \pm 0.28 \text{ (syst)}$
PR3 NILC	$0.26 \pm 0.05 \text{ (stat)} \pm 0.28 \text{ (syst)}$
PR3 SEVEM	$0.27 \pm 0.05 \text{ (stat)} \pm 0.28 \text{ (syst)}$
PR3 SMICA	$0.24 \pm 0.05 \text{ (stat)} \pm 0.28 \text{ (syst)}$
NPIPE Commander	$0.33 \pm 0.04 \text{ (stat)} \pm 0.28 \text{ (syst)}$
NPIPE SEVEM	$0.33 \pm 0.04 \text{ (stat)} \pm 0.28 \text{ (syst)}$

For reference:

PR2 (SMICA), only EB estimator: $\alpha_0 = 0.29 \pm 0.05(stat.) \pm 0.28(syst.)$

Planck intermediate results. XLIX. (2016)

ľ	Minami&Komatsu(2020) Diego-Palazuelos+(2022) Eskilt&Komatsu(2022			
	PR3	PR4	Planck + WMAP	
	$lpha_0 = (0.35 \pm 0.14)^\circ$	$lpha_0 = (0.30 \pm 0.11)^\circ$	$\alpha_0 = 0.342^{\circ + 0.094^{\circ}}_{-0.091^{\circ}}$	

Brief pipeline:

- Cleaned PR3 and NPIPE maps (Commander, NILC, **SEVEM** and **SMICA**)
- Dividing the sky in "patches"

 $(N_{side} = 8, f_{sky, patch} \simeq 0.13 \%, N_{tot patches} = 768)$

- Applying masks (Galactic foreground and bad pixel)
- SkyPatches to Spectra with NaMaster
- Assuming isotropic CB in each patches and applying D^{EB} estimator:

$$D_{\ell}^{EB}(\alpha) = \hat{C}_{\ell}^{EB} \cos(4\alpha) - \frac{1}{2} (\hat{C}_{\ell}^{EE} - \hat{C}_{\ell}^{BB}) \sin(4\alpha)$$

- In each patch, estimation of α_0 maximizing the loglikelihood function —> map of CB angles
- Estimation of α_0 as monopole of the CB map

This extends previous work ($N_{side} = 4$) Gruppuso, Molinari, Natoli, Pagano (2020)

Cosmic Birefringence map from PR3

 α data - PR3 commander

Cosmic Birefringence angle maps obtained from the PR3 polarization maps for Commander component separation method

Bortolami, Billi, Gruppuso, Natoli, Pagano (2022)

Estimates of the cross-correlation spectra $C_{\ell}^{\alpha E}$ and $C_{\ell}^{\alpha B}$ (first time in literature)

Cosmic Birefringence map from PR3

Constraints from $C_{\rho}^{\alpha X}$ in terms of the scale-invariant amplitude $A^{\alpha X}$

Bortolami, Billi, Gruppuso, Natoli, Pagano (2022)			(L = 24)	
parameter	Commander	NILC	SEVEM	SMICA
$A^{\alpha\alpha} \ [deg^2] \ PR3$	< 0.007	< 0.007	< 0.010	< 0.007
$A^{\alpha\alpha}$ [deg ²] NPIPE	< 0.010	-	< 0.009	_
$A^{\alpha T}$ [μK deg] PR3	-1.827 ± 0.953	-1.229 ± 0.873	-2.037 ± 1.038	-1.916 ± 0.945
$\bar{\mathbf{A}}^{\alpha \mathbf{E}} [\bar{\mathbf{n}} \bar{\mathbf{K}} \bar{\mathbf{deg}}] \bar{\mathbf{P}} \bar{\mathbf{R}} \bar{3}$	-3.5 ± 6.0	-1.0 ± 5.6	-9.7 ± 6.0	-7.8 ± 5.6
$A^{\alpha B}$ [nK deg] PR3	2.4 ± 4.0	-1.2 ± 3.7	4.0 ± 4.4	0.3 ± 4.0

 $A_{\text{SMICA}}^{\alpha\alpha} < 0.104 \text{ deg}^2$ at 95%C.L. (L = 12) Gruppuso, Molinari, Natoli, Pagano (2020)

Other constraints on the scale-invariant amplitude $A^{\alpha X}$: Contreras, Boubel, Scott (2018) - Planck data Bianchini, SPT collaboration (2020) Namikawa, ACT collaboration (2020)

 $\leq 0.018 \, \mathrm{deg}^2$ $\leq 0.033 \, \mathrm{deg}^2$

Cosmic Birefringence map from PR4

 $D^{EB}(\alpha)$ estimator —> α angle

Bortolami, Billi, Gruppuso, Natoli, Pagano (2022) Gruppuso, Molinari, Natoli, Pagano (2020)

 $\hat{\alpha}_{LM}^{EB}$ estimator —> α_{LM}

Zagatti, Bortolami, Gruppuso, Natoli, Pagano (TBS)

- L up to $2\ell_{max}$ of CMB maps
- Computationally less expensive
- CB spectrum compatible with 0 at $\sim 2\sigma$ (w/o assuming a scale invariant spectrum)

Kind of estimator as in Gluscevic, Hanson, Kamionkowski and Hirata (2012)

-2.34161

20

Birefringent Cross-Bispectra

Greco, Bartolo, Gruppuso (2022)

compute the three-point correlation functions of anisotropic birefringence with the "observed" CMB fields

$$\langle a_{X,\ell_1m_1}a_{Y,\ell_2m_2}a_{Z,\ell_3m_3}\rangle = \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} B^{XYZ}_{\ell_1\ell_2\ell_3}$$

New cosmological observables that:

- carry signatures of parity-breaking physics
- survive in a regime of purely anisotropic cosmic birefringence
- \neq 0 even if the fields involved are Gaussian

observed means accounting from weak gravitational lensing and eventual birefringence effects

$$X = \alpha, \quad Y, Z = \alpha, T, E, B$$

SNR for birefringent bispectra accounting for LiteBIRD-like instrumental noise in a pure

anisotropic regime ($D_{\ell}^{\alpha\alpha} \simeq 0.1 \text{ deg}^2$)

Bispectrum	SNR
$\delta \alpha TE$	pprox 0.0661
$\delta lpha TB$	pprox 4.0635
$\delta lpha EB$	pprox 7.5658
$\delta lpha EE$	pprox 0.0543
$\delta lpha BB$	pprox 0.0004

We consider the *minimal Standard Model Extension* - contains only renormalizable operators with mass dimension ≤ 4

$$S = \int d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \right]$$

Standard Maxwell term

CPT-odd term The time and the space components of the coupling k_{AF} lead to isotropic and anisotropic birefringence, respectively

Caloni, Giardiello, Lembo, Gerbino, Gubitosi, Lattanzi, Pagano (2023)

 $-\varepsilon^{\alpha\beta\mu\nu}A_{\beta}(k_{AF})_{\alpha}F_{\mu\nu}-\frac{1}{4}(k_{F})^{\alpha\beta\mu\nu}F_{\alpha\beta}F_{\mu\nu}$

CPT-even term

The couplings k_F lead to a conversion of linear polarization (EE and BB spectra) into circular polarization (VV spectrum)

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \varepsilon^{\alpha\beta\mu\nu} A_{\beta}(k_{AF})_{\alpha} F_{\mu\nu} - \frac{1}{4} (k_F) \right]$$

applying the dark crystal formalism as described in

Lembo, Lattanzi, Pagano, Gruppuso, Natoli, Forastieri (PRL2021)

CMB spectra (including EB, TB, VV \neq o) as function of some effective parameters:

 $\beta_{AF,T/S}^2$ related to time/space components of k_{AF} (CPT-odd) β_F^2 depends of the components of k_F in a non-trivial way (CPT-even)

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \epsilon^{\alpha\beta\mu\nu} A_{\beta}(k_{AF})_{\alpha} F_{\mu\nu} - \frac{1}{4} (k_F) \right]$$

applying the dark crystal formalism as described in

Lembo, Lattanzi, Pagano, Gruppuso, Natoli, Forastieri (PRL2021)

The idea:

CMB photons propagate through the Universe. We interprete our Universe as a medium with an "effective" **susceptibility tensor.** If this susceptibility tensor is anisotropic and/or parity-violating, mixing among polarization component of CMB radiation occurred. We can then link the components of the susceptibility tensor to phenomenological parameters describing this conversion among CMB polarization states.

$$\mathcal{S} = \int d^4 x \sqrt{-g} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \varepsilon^{\alpha\beta\mu\nu} A_{\beta}(k_{AF})_{\alpha} F_{\mu\nu} - \frac{1}{4} (k_F) \right]$$

applying the dark crystal formalism as described in

Lembo, Lattanzi, Pagano, Gruppuso, Natoli, Forastieri (PRL2021)

CMB spectra (including EB, TB, VV \neq o) as function of some effective parameters:

 $\beta_{AF,T/S}^2$ related to time/space components of k_{AF} (CPT-odd) β_F^2 depends of the components of k_F in a non-trivial way (CPT-even)

 $\beta_{AF,T/S}^2$ related to time/space components of k_{AF} (CPT-odd) β_F^2 depends of the components of k_F in a non-trivial way (CPT-even)

Comparison with previous works

First comprehensive study of the signatures of Lorentz violation in electrodynamics on CMB anisotropies.

(see V.A. Kostelecky and N. Russell, Data Tables for Lorentz and CPT Violation arXiv:0801.0287)

CPT-odd

Our bounds are the strongest to date, both considering CMB and other sources.

CPT-even

Our bound improves previous constraints by roughly one order of magnitude. This bound is only overcome by those obtained from optical polarimetry of extragalactic sources.

Caloni, Giardiello, Lembo, Gerbino, Gubitosi, Lattanzi, Pagano (2023)

26

Summary and future prospects

- birefringence spectrum.
- motivates further investigations and suggests us to improve our knowledge of Galactic foregrounds.
- primordial B-modes.

Scientists within the COSMOS network have significantly advanced our understanding of cosmic birefringence, by introducing novel methodologies and exploring Planck data to establish more rigorous constraints on both the isotropic birefringence angle and the scale-invariant amplitude of the anisotropic

Minami&Komatsu (2020), Diego-Palazuelos+(2022) and Eskilt&Komatsu (2022) have suggested an hint of detection of isotopic birefringence, excluding $\alpha_0 = 0$ with a significance ranging from 2.4 σ to 3.6 σ . This

Our classical theory of gravitation fails to be predictive in physically relevant regimes. If Quantum Gravity is the answer we can only look for low energy "relic signatures", such as violation of symmetries (Parity, Lorentz).

Constraining Cosmology through CMB polarization is the focus of next-decade CMB experiments. Forthcoming CMB experiments will reach an unprecedented sensitivity to linear CMB polarization. B-modes are the key observable of the coming decade. A parity-violating term, as extension of the standard model, generates spurious B-mode component that acts as a potential contaminant for all the measurements of

Sum

- Scientists within birefringence, b constraints on b birefringence spece
- Minami&Komatsı
 detection of iso
 motivates further
- Our classical thec answer we can on
- Constraining C
 Forthcoming CM
 are the key obse
 generates spuriot
 primordial B-mc

COSMOLOGY MARCHES ON

Thanks for your attention!

tanding of cosmic Iblish more rigorous e of the anisotropic

gested an hint of n 2.4 σ to 3.6 σ . This grounds.

Jantum Gravity is the (Parity, Lorentz).

CMB experiments. larization. B-modes the standard model, e measurements of

Backslides

Impact on CMB polarization spectra

$$1 - (-1)^{L} \cos(4\alpha_{0}) \tilde{C}_{\ell_{1}}^{EE} + (1 + (-1)^{L} \cos(4\alpha_{0})) \tilde{C}_{\ell_{1}}^{BB}] C_{\ell_{3}}^{\alpha\alpha} \frac{M_{\ell\ell}}{2}$$

$$1 - (-1)^{L} \cos(4\alpha_{0}) \tilde{C}_{\ell_{1}}^{BB} + (1 + (-1)^{L} \cos(4\alpha_{0})) \tilde{C}_{\ell_{1}}^{EE}] C_{\ell_{3}}^{\alpha\alpha} \frac{M_{\ell\ell}}{2}$$

$$\int_{4}^{4} \left[\frac{1}{2} \left(\tilde{C}_{\ell_{1}}^{EE} - \tilde{C}_{\ell_{1}}^{BB} \right) \right] C_{\ell_{3}}^{\alpha\alpha} (-1)^{L+1} M_{\ell\ell_{1}\ell_{3}}$$

Impact on CMB polarization spectra

Impact on CMB polarization spectra

$$1 - (-1)^{L} \cos(4\alpha_{0}) \tilde{C}_{\ell_{1}}^{EE} + (1 + (-1)^{L} \cos(4\alpha_{0})) \tilde{C}_{\ell_{1}}^{BB} C_{\ell_{3}}^{\alpha\alpha} \frac{M_{\ell\ell}}{2}$$

$$1 - (-1)^{L} \cos(4\alpha_{0}) \tilde{C}_{\ell_{1}}^{BB} + (1 + (-1)^{L} \cos(4\alpha_{0})) \tilde{C}_{\ell_{1}}^{EE} C_{\ell_{3}}^{\alpha\alpha} \frac{M_{\ell\ell}}{2}$$

$$\frac{1}{2} \left[\frac{1}{2} \left(\tilde{C}_{\ell_{1}}^{EE} - \tilde{C}_{\ell_{1}}^{BB} \right) \right] C_{\ell_{3}}^{\alpha\alpha} (-1)^{L+1} M_{\ell\ell_{1}\ell_{3}}$$

