# Polarization modulation for space application





Fabio Columbro

Sapienza, University of Rome

CMB-DAY 2 - 17/10/23



Agenzia Spaziale Italiana



## **B-modes**



Wide spectral coverage required to monitor the foregrounds (dust, synchrotron) and separate the CMB signal

$$= \frac{c_l^T}{c_l^S}|_{l=2} \propto 0.1 \left(\frac{E_{inflation}}{2 \cdot 10^{16} GeV}\right)^4$$

Current *r* upper limit  $\sim 0.1$ 

At 1 = 80, r = 0.05 corresponds to 50nK, r = 0.001 to 8nK



# **CMB** Experiments

Lot of experiments aim to measure the B-modes polarization with different approaches



#### Ground

- Long observational time
- Possibility to upgrade/modify
- the instrument

- "low" cost and "fast" development time

| Balloon<br>Balloon | HWPs                                                                                                                           | Continuous<br>Step, 5k                                                                                             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Balloon            | HWP                                                                                                                            | Continuous                                                                                                         |
|                    |                                                                                                                                | Continuous                                                                                                         |
| Balloon            | HWP                                                                                                                            | Continuous                                                                                                         |
| South Pole         |                                                                                                                                | _                                                                                                                  |
| Atacama Desert     | HWP                                                                                                                            | Continuous,                                                                                                        |
| Atacama Desert     |                                                                                                                                | _                                                                                                                  |
| Puma de Atacama    | HWP                                                                                                                            | Step, 5k                                                                                                           |
| Atacama Desert     | HWP                                                                                                                            | Continuous,                                                                                                        |
| Atacama Desert     |                                                                                                                                | -                                                                                                                  |
| South Pole         |                                                                                                                                | -                                                                                                                  |
|                    | South Pole<br>Atacama Desert<br>Atacama Desert<br>Puma de Atacama<br>Atacama Desert<br>Atacama Desert<br>South Pole<br>Balloon | South Pole-Atacama Desert-Atacama DesertHWPPuma de AtacamaHWPAtacama Desert-Atacama DesertHWPSouth Pole-BalloonHWP |

#### Balloon

- Residual atmospheric emission

#### Space

- No atmosphere

- No Earth emission



# **CMB Experiments - Polarization Modulation**

### **Polarization sensitive detectors**

- No polarization systematics introduced by moving optical elements
- Easier instrument development

- The sky has to be mapped with different angles to fully reconstruct the polarization
- Beam knowledge is critical. Asymmetries can introduce systematics

A Half-Wave Plate (HWP) as polarization modulator represents a powerful tool to minimize spurious contaminations

### **Active optical element**

#### Half-wave plate type:

- Metal-mesh
- Birefringent crystal (sapphire)

#### **Temperature**:

- 300K The emission of the HWP has to be
- 40-50K
- 4-5K

compared with other systematics (atmospheric emission, ...)

### Strategy:

- Continuous
- Step

Faster is better (see next slide)



# Stokes polarimeter



To be effective, HWPs must be rotated during the observation, either in stepped or (continuously) spinning mode

$$S(\theta) = \frac{1}{2}(I + Q\cos(4\omega t) + U\sin(4\omega t)) = \frac{1}{2}(I + Q\cos 4\theta t)$$

#### A spinning HWP introduces:

- power load produced by (cryogenic) continuous rotation
- spurious signals (1f, 2f, 3f, 4f, ....)



 $\theta + U \sin 4\theta$ 

#### A spinning HWP helps to:

- mitigate of 1/f noise
  (and atmospheric polarized signal if present)
- increase signal-to-noise ratio
- reconstruct the state of incoming polarized light (ideally with a single detector)
- mitigate detector gain variation
- neglect beam asymmetry



# Stokes polarimeter

Systematics from HWP are not fully characterized yet:

- Angular accuracy reconstruction \_
- HWP harmonics

. . . . .

HWP differential transmission



HWP and its rotation are far from ideality!

A typical cryogenic system for space missions (like LiteBIRD) has a power budget on the coldest stage of tens of mW. A small part of this budget is allocated to the PMU.



Heat loads normalized at 1Hz



## **PMUs - Overview**

2128

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003

### A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings

Shaul Hanany, Tomotake Matsumura, Brad Johnson, Terry Jones, John R. Hull, and Ki B. Ma

Abstract-Measurements of the polarization of the cosmic microwave background (CMB) radiation are expected to significantly increase our understanding of the early universe. We present a design for a CMB polarimeter in which a cryogenically cooled half wave plate rotates by means of a high-temperature

the bang [21]. By combining the data from CMB and other astrophysical measurements we can now determine that only 5% of the matter and energy density in the universe is made of ordinary electrons, quarks, neutrinos and photons, and that the rest

#### Pros

- NO stick-slip friction
- NO extra-effort to cool HTSs •
- Passive stable levitation
- Low Coefficient of friction
- Continuous rotation (0-10Hz)

#### Cons

- Variable magnetic field
- Clamp mechanism at 4K •





# PMUs - Overview





LiteBIRD LFT - Sakurai et al. 2022







The breadboard design is based on the PMU (metal-mesh HWP) developed by our team for the SWIPE balloon-borne instrument.





Subsystems:

- 18 YBCO bulks
- 2 segmented NdFeB rings + 3 iron yokes
- Homemade clamp/release system
- 64 coils (8-phase) + 8 coils (start)
- 8 magnets
- Optical encoders
- Capacitive sensors
- Hall sensors
- 2 cryogenic webcams

#### Stable rotation at ~10K!













# **PMU - LiteBIRD MHFT**



|                                                            | MFT       | HFT       |  |
|------------------------------------------------------------|-----------|-----------|--|
| HWP diameter                                               | 320 mm    | 220 mm    |  |
| HWP temperature                                            | < 20 K    | < 20 K    |  |
| PMUs dissipation                                           | < 4 mW    |           |  |
| Rotation frequency                                         | 45 rpm    | 45 rpm    |  |
| Angular accuracy                                           | < 1'      | < 5'      |  |
| Lifetime                                                   | > 3 years | > 3 years |  |
| Total mass                                                 | < 20 Kg   |           |  |
| 10  MFT    HFT    HFT    O    MHFT proposal    0    0    0 |           |           |  |
| 0.0 0.2 0.4 0.6 0.8<br>Frequency [Hz]                      |           |           |  |

## Conclusions

The SMB technology is ready to be used for space application. The heat loads **must** be reduced by:

- reducing the inhomogeneity of the main magnet
- Improving the purity of the copper wire

Strong interaction with the manufacturers is needed.

Space companies must be involved in the qualification process in order to raise the SMB-TRL and to qualify each component of the system.

evel of HWP-Mueller matrix characterization is still an open issue.