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MULTISCALE ANALYSIS

Multiscale analysis consists in studying the source properties from the field at a set of 
different altitudes or, in other words, in the 3D space

Multiscale modeling help obtaining potential field models across a broad range of
scales, so yielding a better definition of the source parameters .

In fact, single-scale models often do not interface well with each other across wide
ranges of scales.

In particular, critical and useful approximations made at one scale frequently break
down completely at other scales.



Bulding a multiscale potential field 
dataset

Multiridge/scaling function  analysis 
of the multiscale dataset

MULTISCALE ANALYSIS OF POTENTIAL FIELD 
SATELLITE DATA

Depth to deep crustal sources/kind of source/Mass Fast Estimation



GEOMETRIC APPROACH

REDUCED
EULER
EQUATION

MULTISCALE METHOD

(Fedi et al., 2009)

gravity field !i.e., for n= 2" or, equivalently, that of the magnetic
field. In this case, assuming M = 1 and considering the source at
r0!0,0,z0" and for y = 0, we have

f2!x,z" =
2!z − z0"2 − x2

#x2 + !z − z0"2$5/2 , !11"

where the field is again normalized by k.
So, at x = x0 = 0, we have

! 2!z" =
# log! f2"
# log!z"

= − 3
z

z − z0
. !12"

Hence,

! 2!z = − z0" = % # log# f2!z"$
# log!z" %

z = −z0

= − 1.5, !13"

so that we obtain the following scaling function W2!x,z":

W2 = f2z3/2 =
2!z − z0"2 − x2

#x2 + !z − z0"2$5/2z3/2. !14"

By using this procedure, we can obtain a more general definition
of the DEXP transformation that determines any nth vertical deriva-
tive of the Newtonian potential of a pole source, fn!z" = 1/!z
− z0"n+1.

We find for the scaling function ! n:

!n =
# log#fn!z"$

# log!z"
= −

!n+ 1"z
z − z0

, !15"

so that, at z = −z0,

!n!z = − z0" = % # log# fn!z"$
# log!z" %

z=−z0

= −
!n+ 1"

2
. !16 "

Hence, meaningful extreme points occur at x = x0, y = y0, z = −z0

for the scaled function

Wn = z"nfn, !17 "

where

"n = − ! n!z = − z0" = 0.5!n+ 1" !18 "

are the scaling exponents of the DEXP transformation of order n.
In the following text, depending on the potential field order and on

the type of potential field, we, respectively, refer to the potential field
as the scaled gravity field Wg 1, the scaled magnetic field Wm2, the
scaled Gravity Vertical Gradient Wg 2, and so on.

Estimating the excess mass

One important aspect of the DEXP transformation is the possibili-
ty to estimate the mass excess M from the value of the scaled gravity
field Wg 1! r̄0", where r̄0 indicates its extreme points. For a single pole,
we find !see equation 10"

Wg 1!r̄0" = % #Mz

!z − z̄0"2%
z = −z̄0

=
#M

4z̄0
, !19 "

where g is the gravitational constant, so that

M =
4Wg 1!r̄0"z̄0

#
, !20"

from which the density of a uniformly dense sphere of radius ais

$ =
4Wg 1!r̄0"z̄0

4/3%#a3 . !21"
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Figure 3. The function, log f1 + log z, at x = x0, y = y0. Observing
the surface, log # f1!z,z0"$ + log!z", we clearly see that, for poles at
any depth z0, a curve occurs having an extreme point at z = −z0.
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Figure 4. The function f1z at x = x0, y = y0. Observing the surface
f1!z,z0"z, we see that, for poles at any depth z0, a curve occurs having
an extreme point at z = −z0.
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derivative of the gravity field. Figure 8d shows the DEXP-trans-
formed function Wg3 in which, once again, three extreme points are
evident at about the right source coordinates r01, r02, and r03. This
time, however, the shallower sources are much more clearly identifi-
able, although the deepest one is less intense. The spreading for all
three sources is quite reduced, and the mutual interference effects are
practically absent. The depths estimated for any of the three sources
are close to the true depths.

With regard to the estimation of excess mass values, they are quite
well estimated for the three sources; the best estimations occur for
the second-order derivative of the field. For the first two sources, the
estimated mass excess is within 90% of the true values, whereas for
the third source, we have, respectively, 10% !n = 1", 63% !n = 2",
and 95% !n = 3" of the true value.

From this comparison, we emphasize that the high-order DEXP
transformation may be useful to

1! Reduce the background and the mutual interference effects,
thus allowing more accurate depth estimations

2! Obtain meaningful representations of the distribution of sourc-
es versus depth by enhancing the effects of shallow versus deep
sources "the opposite occurs when using a low-order deriva-
tive!

Note that the DEXP method does not need filtering or other process-
es to separate, before the interpretation, the different components of
the field from sources at different depths. As shown in Figure 8c and
d, the results of the DEXP method enjoy an inherent stability versus
high-order derivations of the field. This stability is a physical prop-
erty based on the regular behavior of potential fields versus the alti-
tude z.

For the same reasons, the DEXPmethod is also stable with respect
to relatively high levels of noise in the data. We illustrate this in the
case of a magnetic anomaly related to a homogeneous sphere "Figure
9a and b!. Note that the dipolar nature of the field let two extrema to
occur at the correct depth for the source, one being negative and the
other positive.Adding Gaussian random noise to the data "with a 4%
ratio between the respective norms!, the correct position of the two
extrema is, nevertheless, obtained "Figure 9b!. Hence, the depth to
source of dipolar anomalies is correctly estimated, even if the anom-
aly is not reduced to the pole. If the anomaly is not reduced to the
pole, or if an asymmetric field transformation is involved, the esti-
mate of the horizontal position of the source is not direct. The hori-
zontal position lies, in fact, in an intermediate position with respect
to the two detected extrema, which, in turn, depends on the magneti-
zation- and inducing-field directions. For magnetic data, we can im-
prove the location accuracy by applying the DEXPtransformation to
the modulus of the analytic signal of the magnetic field "Nabighian,
1972!. The analytic signal of a magnetic anomaly is a bell-shaped
anomaly of order n = 3 because it is based on the derivatives of the
magnetic field. As shown in Figure 9c, DEXP transformation ap-
plied to the analytic signal still yields a good description of the
source for either its horizontal or depth position, and this location is
accurate even with the increase in noise associated with the deriva-
tions involved in the analytic signal transformation.

Determining the scaling exponent from the data

Here are some criteria that may be used to assess the scaling expo-
nent directly from data.

Criterion of extreme point invariance
versus derivative order

From Figure 8, we argue that changing the order of derivation n al-
lows reduction of the mutual interference effects from nearby sourc-
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Figure 8. Scaled potential fields "gravity! of different-order n for a
multisource case: "a! the field at zero-level from three pole-sources
placed, respectively, at r01!60,60,2" km, r0!20,60,19" km, and
r03!80,60,9" km; and having density contrasts: r01 = 1 g/cm3, r02
= 0.3 g/cm3, and r03 = −1.5 g/cm3; "b! scaled gravity field Wg1; "c!
scaled vertical derivative of the gravity field Wg2; "d! scaled second
vertical derivative of the gravity field Wg3. The vertical sections of
Wg1, Wg2, and Wg3 correspond to the profile shown in "a! and were ob-
tained after numerical upward continuation of the respective fields
up to 50 km and scaling by equation 18 for n = 1, n = 2, and n = 3,
respectively. In each case, three extreme points "see white markers!
indicate the presence of sources with various density contrasts, but
the accuracy of the source parameter estimations "depth and mass
excess! increases with the order n, especially for the third source.
The figure shows that changing the order of the transformation may
be useful also to reduce the mutual interference effects, to enhance
the effects of shallow versus deep sources, and in general, to repre-
sent the distribution of sources versus depth without resorting to pre-
filtering.
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FAST MASS ESTIMATION (Fedi,2007)



MULTISCALE ANALYSIS OF 
CRUSTAL STRUCTURES

TESZ

MOHO (Grad et al., 2009)



EMMP  at 100 km of altitude

AEROMAGNETIC/SATELLITE DATASET

TESZ

MF7 model data at 350 km



MULTISCALE ANALYSIS OF 
CRUSTAL STRUCTURES

Milano M., Fedi M. and Fairhead J.D., 2016



MULTIRIDGE ANALYSIS

For each profile the highest resolution was searched
to have the clearest definition of the ridges

1st order derivative for profile p1
2nd order derivative for profiles p2, p4, p6 
3rd order derivative for profiles p3 and p5

(Guterch and Grad, 2006)

100 km altitude

Milano, Fedi and Fairhead , 2016



Seismic sections:
LT-7, LT-2, LT-4, 
CEL01.

Ridges correspond to 
the TESZ region

Depth values
retrieved: 
37 – 42 km

Depth values retrieved 
by choosing the best-
fit straight lines to the 
ridges, in a least-square 
sense

MULTIRIDGE ANALYSIS 
(AEROMAGNETIC DATA)

Milano M., Fedi M. and Fairhead J.D., 2016



SCALING FUNCTION

(Fedi, 2007)

The homogeneity degree n may be computed

DEFINING THE KIND OF SOURCE

n @ - 0.8
h @ 40 / 45 km

The estimated homogeneity degrees can be 
interpreted as typical for finite fault or sill structures. 
These kinds of idealized models can be adopted for 

explaining the most complex features of the 
morphology of an interface or a basement.

The depth values obtained by the scaling function 
method agree with the depth estimates obtained 

with the geometric method. 



3D MODEL OF THE MOHO BOUNDARY 
BENEATH THE TESZ

Milano et al., 2016Milano M., Fedi M. and Fairhead J.D., 2016



(Pastorutti and Braitenberg, 2019)

Gravity field from GOCE satellite data in the TESZ region 

Free-air gravity field Bouguer gravity field 

Moho depth model



SIMPLIFIED SYNTHETIC MODEL OF TESZ SUTURE ZONE

MOHO
MOHO

Magnetic 
gradient

mGal/km2

Gravity 
gradient

MOHO

MOHO
DENSER MANTLE



Multiridge analysis of gravity synthetic model of the TESZ region 

GRAVITY FIELD PRODUCED BY A TESSEROID MODEL OF THE MOHO

Seismic-based Moho depth model by Grad et al. (2009)

TESZ

CRUSTAL SOURCES



Multiridge analysis of gravity synthetic model of the TESZ region 

GRAVITY FIELD GENERATED BY A TESSEROID MODEL OF THE MOHO

Tesseroid model of the Moho Gravity field at a tangent planar surface

CRUSTAL SOURCES

Forward modeling using 
tesseroids

(Uieda et al., 2016)



Multiridge analysis of gravity synthetic model of the TESZ region 

TESZ

SEISMIC MOHO

GRAVITY FIELD AT 10 KM ALTITUDE

A

A’

A A’

km

Multiscale dataset calculated                             
from 1 km to 200 km altitude

TESZ

CRUSTAL SOURCES



Is an E2E simulator in place and are the most important processes and input parameters (including uncertainty estimates) 
properly represented? 

Partly

Is an error propagation model in place allowing the rigorous computation of uncertainties (e.g. accounting for co-variant error 
effects) for measurements and observations? 

Partly

Has a set of realistic test scenarios been established and are they scientifically justified? Space: yes
Time: not yet

Is the simulator tested and validated and applied for the predefined set of scenarios? Space: yes
Time: not yet

Are all assumptions of the performance simulator documented and critically discussed? yes

Has the robustness of the simulator been demonstrated against independent observations (e.g. campaign data)? yes

Is a draft instrument calibration strategy available and properly described? 

Is there a demonstrated interest of users? yes

Is there a first evaluation of (simulated or measured data) in applications? Partly


