

Phase A Activities Insights and User/Mission Requirements for NGGM as a Mass-change and Geosciences International Constellation (MAGIC)

ASI WS di consultazione della comunità scientifico/applicative sulla missione ESA NGGM/MAGIC

26 January 2021

Luca Massotti, Roger Haagmans, Pierluigi Silvestrin,

Background

Over the past years discussions between ESA and NASA led to a strong interest in exploring a joint future mission, as noted in various communications (ESA letter February 15, 2019, NASA letter February 27, 2019 and NASA letter November 15, 2019).

The agencies have cooperated in preparing a **Mission Requirement Document** (available via ASI) and defining science study activities. A Joint Expert Group, co-led by NASA HQ and ESA, will support the definition of jointly agreed user and science needs.

Global User Community Activities

Resolutions

✓ IUGG (Int. Union of Geodesy and Geophysics) embodies all geophysical and geodetic disciplines

ADOPTED BY THE COUNCIL

RAGUE, CZECH REPUBLIC (22 JUNE – 2 JULY 2015)

THE XXVI GENERAL ASSEMBLY

- ✓ Represents about 100,000 users worldwide,
- ✓ Resolution 2 is the only resolution which makes explicit mention of satellite missions \rightarrow GRACE (FO), GOCE & Swarm

purpose of estimating the gravity and magnetic fields and their time variations, The clear expression of need from the user communities so far, and the definition of joint science and user requirements for a future satellite gravity field mission constellation by an international working team under the umbrella of IUGG,

to close the global water budget and to quantify the climate evolution of the Earth, The long lead time required to bring an earth observation system into operation.

- The experience acquired in the last decade within the IUGG in analyzing data from

dedicated satellite missions such as CHAMP, GRACE, GOCE and Swarm for the

Noting

Acknowledging

- The need for a long-term sustained observation of the gravity and magnetic fields and related mass transport processes of the Earth beyond the lifetime of GRACE and the GRACE Follow-On planned for the 2017 - 2022 period, and beyond the lifetime of Swarm, currently 2013 to 2018,
- The demonstrated need for satellite constellations to improve temporal and spatial resolution and to reduce aliasing effects,

International and national institutions, agencies and governmental bodies in charge of supporting Earth science research to make all efforts to implement long-term satellite gravity and magnetic observation constellations with high accuracy that respond to the aforementioned need for sustained observation.

European Space Agency

Where mass change contributes to GCOS ECVs

Domain	GCOS Essential Climate Variables						
	Surface: Air temperature, wind speed and direction, water vapour, pressure, precipitation, surface radiation budget.						
Atmospheric	Upper-air: Temperature, wind speed and direction, water vapour, cloud properties, Earth radiation budget (including solar irradiance).						
	Composition: Carbon dioxide, methane, and other long-lived greenhouse						
Total V	Vater Storage (TWS) accepted as new ECV						
Oceanic	partial pressure, ocean acidity, phytoplankton.						
	Sub-surface: Temperature, salinity, current, nutrients, Carbon dioxide partial pressure, ocean acidity, Oxygen, tracers.						
Terrestrial	River discharge, water use, groundwater, lakes, snow cover, glaciers and ice caps, ice sheets, permafrost, albedo, land cover (including vegetation type), fraction of absorbed photosynthetically active radiation (FAPAR), leaf area index (LAI), above-ground biomass, soil carbon, fire disturbance, soil						
	moisture.						

High, medium, low contribution

ESA & NASA cooperation: MAGIC

ESA UNCLASSIFIED - For Official Use

European Space Agency

Opportunity for long-term cooperation: beyond MAGIC

AJSST tasks

European Space Agency

Methodology to derive user requirements from references

- E.motion2 bubble plot → Spatial resolutions [km] for the three time scales:
 - Daily to weekly;
 - Monthly to seasonal;
 - Long-term.

Thresholds and *targets* are obtained from the intersections between the yellow lines and the signal bubbles (including flection points and "unrealistic" signals).

- IUGG Table 1-1 → Accuracy [cm or cm/yr]. Values from the table are interpolated. Each thematic field has its own spatial resolutions (from bubble plot) and accuracy is estimated from IUGG interpolated values.
 IGSWG specific requirements are also included for a few signals.
- Assumption:
 - ➤ Seasonal to inter-annual → Monthly
 - > IUGG 1-day is "Daily to weekly"
- Inclusion of MCDO requirements

Toma		Performance						
Mission	res.	Spat. res.	Equivalent Water Height (EWH)	Geoid	Gravity anomaly	Gravity Gradient		
		800 km (d/o 25)	7.5 mm / 0.75 mm/yr	0.15 mm / 0.015 mm/yr	0.25 μGal / 0.025 μGal/yr	10 µЕ / 1 µЕ/уг		
GRACE	1 month	400 km (d/o 50)	25 mm / 2.5 mm/yr	0.25 mm / 0.025 mm/yr	1 µGal / 0.1 µGal/yr	0.1 mE / 0.01 mE/yr		
		200 km (d/o 100)	0.5 m / 5 cm/yr	2.5 mm / 0.25 mm/yr	25 μGal / 2.5 μGal/yr	5 mE / 0.5 mE/yr		
		800 km (d/o 25)	1.5 mm / 0.15 mm/yr	0.03 mm / 3 µm/yr	0.05 µGal / 5 nGal/yr	2 µE / 0.2 µE/yr		
	1 month	400 km (d/o 50)	5 mm / 0.5 mm/yr	50 μm / 5 μm/yr	0.2 μGal / 0.02 μGal/yr	20 µE / 2 µE/yr		
Scen. 1		200 km (d/o 100)	10 cm / 1 cm/yr	0.5 mm / 0.05 mm/yr	5 μGal / 0.5 μGal/yr	1 mE / 0.1 mE/yr		
Scen. 2		150 km (d/o 133)	50 cm / 5 cm/yr	1 mm / 0.1 mm/yr	10 µGal / 1 µGal/yr	5 mE / 0.5 mE/yr		
		100 km (d/o 200)	5 m / 0.5 m/yr	10 mm / 1 mm/yr	200 µGal / 20 µGal/yr	50 mE / 5 mE/yr		
	1 month	800 km (d/o 25)	0.15 mm / 0.015 mm/yr	3 μm / 0.3 μm/yr	5 nGal / 0.5 nGal/yr	0.2 μΕ / 0.02 μΕ/γr		
		400 km (d/o 50)	0.5 mm / 0.05 mm/yr	5 μm / 0.5 μm/yr	0.02 μGal / 0.002 μGal/yr	2 μE / 0.2 μE/yr		
		200 km (d/o 100)	1 cm / 0.1 cm/yr	0.05 mm / 0.005 mm/yr	0.5 μGal / 0.05 μGal/yr	0.1 mE / 0.01 mE/yr		
		150 km (d/o 133)	5 cm / 0.5 cm/yr	0.1 mm / 0.01 mm/yr	1 μGal / 0.1 μGal/yr	0.5 mE / 0.05 mE/yr		
		100 km (d/o 200)	0.5 m / 0.05 m/yr	1 mm / 0.1 mm/yr	20 μGal / 2 μGal/yr	5 mE / 0.5 mE/yr		
Scen. 3	1 day	800 km (d/o 25)	15 mm	0.3 mm	0.5 μGal	20 µE		
		400 km (d/o 50)	50 mm	0.5 mm	2 µGal	200 µE		
Scop 4	1 day	800 km (d/o 25)	1.5 mm	0.03 mm	0.05 µGal	2 μΕ		
Scen. 4	таау	400 km (d/o 50)	5 mm	0.05 mm	0.2 µGal	20 µE		

E.motion² bubble plots – Spatial resolution definition

ESA UNCLASSIFIED - For Official Use

IUGG Table 1-1 – Accuracy definition

Process for all science objectives

This procedure is repeated to consolidate all requirements related to science questions formulated for *hydrology*, *cryosphere*, *ocean*, *solid earth and climate*.

A **S**cience **T**raceability **M**atrix (SATM) is build to keep track of the origin of specific requirements.

Spatial resolutions and temporal scales associated to gravity changes Science and Applications Traceability Matrix (SATM) Current status Vs. MCDO Vs. Joint constellation (MAGIC)				to gravity ATM)	References: IUGG-interpolated, IUGG specific requirement, DS+MCDO, IGSWG, Grav. Seismo.; Wiese et al. 2016, Metivier & Conrad, 2008; Marquart et al.,2005 + Dumberry, 2010		
				MAGÍC)	N.A. = Not Applicable/Not Available (e.g. due to lack of measurements/capabilities)		
Thematic field	Signal	Signal Time scale (D: Daily to weekly; M: Monthly (Seasonal to inter- annual); L: Long-term trend)	Current state of the art (e.g. GRACE, GRACE-FO)	MCDO	Joint constellation (MAGIC)		
			Perclution	Resolution & Accuracy	Resolution & Accuracy		Scientific/s ocietal
			Long-term trend)		Threshold	Target	<u>Q</u> uestions & <u>O</u> bjectives
Hydrology	Ground- water storage	D	N.A.	N.A.	Threshold-a: 600 km @ 3.2 cm; Threshold-b: 300 km @ 5.9 cm; Threshold-c: 280 km @ 6.0 cm	Target-a: 600 km @ 0.3 cm; Target-b: 300 km @ 0.6 cm; Target-c: 280 km @ 0.6 cm	Q: H1, H2, H3, CL2; O: H-1a, H-

Overall user requirements: Science and Applications Traceability Matrix

				Goal: 3 km @ 1.0 cm			H2-c; H-3a; CL-2a
		L	1000 km @ 1.0 mm/ <u>yr</u>	TBD	Threshold-a: 350 km @ 0.1 cm/ <u>yr;</u> Threshold-b: 150 km @ 5.0 cm/ <u>yr</u>	Target-a: 350 km @ 0.01 cm/yr; Target-b: 150 km @ 0.5 cm/yr; Target-c: 200 km @ 0.1 cm/yr	
	Cryospher e mass balance	D	N.A.	N.A.	N.A.	N.A.	
		М	200-500 km @ 4.0-5.0 cm	Baseline: 300 km @ 4.0 cm; Goal: 100 km @ 1.0 cm	Threshold-a: 250 km @ 5.5 cm; Threshold-b: 150 km @ 50.0 cm	Target-a: 250 km @ 0.55 cm; Target-b: 150 km @ 5.0 cm	Q: C1, C2, C3, CL2; O: C-1b; C- 2a, C-2b, C- 2d, C-2e; C3-a: CL-
		L	350 km @ 1 cm/ <u>yr</u>	TBD	Threshold-a: 170 km @ 2.6 cm/yr; Threshold-b: 130 km @ 15.0 cm/yr	Target-a: 170 km @ 0.26 cm/ <u>yr;</u> Target-b: 130 km @ 1.5 cm/ <u>yr</u>	2a, CL-2b
	Global and regional sea level	D	N.A.	N.A.	N.A.	N.A.	
Cryospher e		М	300 km @ 1.5 cm	Baseline: 300 km @ 1.5 cm; Goal: 100 km @ 1.5 cm	Threshold-a: 250 km @ 5.5 cm; Threshold-b: 150 km @ 50.0 cm	Target-a: 250 km @ 0.55 cm; Target-b: 150 km @ 5.0 cm	Q: C1, C2, CL1, CL2; O: C-1a, C- 1c; C-2a; CL-1a, CL-
		L	350 km @ 1 cm/ <u>yr</u>	TBD	Threshold-a: 170 km @ 2.6 cm/ <u>yr;</u> Threshold-b: 130 km @ 15.0 cm/ <u>yr</u>	Target-a: 170 km @ 0.26 cm/ <u>yr;</u> Target-b: 130 km @ 1.5 cm/ <u>yr</u>	1b; CL-2a
		D	N.A.	N.A.	N.A.	N.A.	
	GIA	М	300 km @ 2.5 cm	Baseline: 300 km @ 2.5 cm; Goal: 200 km @ 1.0 cm	Threshold-a: 250 km @ 5.5 cm; Threshold-b: 150 km @ 50.0 cm	Target-a: 250 km @ 0.55 cm; Target-b: 150 km @ 5.0 cm; Target-c: 200 km @ 1.0 cm	Q: C1, C2, CL2; O: C-1a, C- 1c; C-2a; CL-2a, CL-
		L	350 km @ 1 cm/ <u>yr</u>	TBD	Threshold-a: 170 km @ 2.6 cm/ <u>yr;</u> Threshold-b: 130 km @ 15.0 cm/ <u>yr</u>	Target-a: 170 km @ 0.26 cm/yr; Target-b: 130 km @ 1.5 cm/yr; Target-c: 150 km @ 0.2 cm/yr	2b
		D	N.A.	N.A.	N.A.	N.A.	

ESA UNCLASSIFIED - For Official Use

Slide 14

European Space Agency

Science Requirements vs. Simulations (so far)

• Simulations based on the following publication:

" Anna F Purkhauser, Christian Siemes, Roland Pail, Consistent quantification of the impact of key mission design parameters on the performance of next-generation gravity missions, *Geophysical Journal International*, Volume 221, Issue 2, May 2020, Pages 1190–1210, https://doi.org/10.1093/gji/ggaa070"

- Dual pair simulations vs. threshold science requirements
- Cumulative degree RMS plots
- Scenario deltas:
 - Altitude: 350 km / 500 km
 - Noise: Nominal / Instrument-Noise-Only
 - Temporal: Daily Weekly / Monthly / Long-term

Simulation details

- Solutions include the HIS global signal
- Raw solutions not post-processed
- Weekly solutions of d/o 70 co-parameterized with daily solutions of d/o 15
- 100km inter-satellite distance

Nominal Solution Instrument Noise Solution NGGM-type instrument NGGM-type instrument ٠ noise noise AO de-aliasing model errors OT model errors HIS residual temporal aliasing error

Slide 16

•

•

•

٠

Monthly – 500 km Altitude

Daily-to-Weekly – 350 km and 500 km Altitude

100

Long Term – 350 km and 500 km Altitude

AJSST tasks

European Space Agency

System Requirements

NGGM from product to instruments

The **requirements** for the SST sensor (LRI or LMI) and the accelerometer to meet the required values were derived, as presented in the table below (coloured noise).

Every mission profile belonging to a **grey box** will not meet the requirements (exe).

Sat. dist. [km] Altitude[km]	50	100	200	300
300	>> 10	>>10	<10	<10
350	<10	<10	<1	<1
400	>1	<1	<1	<1
450	<1	<1	<1	<1
500	<1	<1	<1	<1
600	<1	<1	<1	<1

 $PSD_{wn_range} = a \cdot d [nm/VHz]$

where: "a" being SST noise "d" being intersat. distance

Sat. dist. [km] Altitude[km]	50	100	200	300
300	o(E-12)	o(E-11)	o(E-11)	o(E-11)
350	o(E-12)	o(E-12)	o(E-11)	o(E-11)
400	o(E-13)	o(E-12)	o(E-12)	o(E-12)
450	< o(E-13)	< o(E-13)	o(E-12)	o(E-13)
500	< o(E-13)	< o(E-13)	< o(E-13)	< o(E-13)
600	< o(E-13)	< o(E-13)	< o(E-13)	< o(E-13)

Non-gravitational differential acceleration:

```
PSD_{wn_{acc}} = a [m/s^2/\sqrt{Hz}]
in 1 mHz < f < 100 mHz BW
```


- 3. "Optimal" design of the constellation is key to:
 - capture the most demanding signals
 - optimise the retrievals
 - guarantees comparable quality products for the required periods (important for ECV and (near real-time) applications)
 - and *requires* a degree of control of the satellites to maintain the constellation for any implementation option

Example drifting ground tracks -> Eastward near 3 days

Example of simulation results over Europe

30 days "GRACE" type

3 days double pair

European Space Agency

Example of simulation results over Europe

30 days "GRACE" type

30 days double pair

Possible results for hydrology: better closure of the water cycle, drought and wetness indexes?

observable catchments One satellite pair (GRACE class) Two satellite pairs (NGGM class) One satellite pair (GRACE class) Two satellite pairs (NGGM class) 2003-07-25 2003-07-25 2002-08-18 2002-08-18 Zuran From Abnormal dry Moderate drought Severe drought Extreme drought Exceptional drought Normal Abnormal drv Moderate drought Severe drought Extreme drought Exceptional drought Normal Drought intensity Drought intensity

esa

EC Groundwater Service and MAGIC

MAGIC will be crucial for EC groundwater service under development

Phase A and technology pre-developments

Background studies in ESA

More than a decade of ESA system and technology studies on the subject

Title	Epoch	Prime / Main SubCos	Purpose and main achievements
Laser Doppler Interferometry Mission for Earth's Gravity Field	2004 - 2005	TASI INRIM	System and instrument concept study
Laser interferometry high precision tracking for LEO	2007-2009	TASI INRIM	Proof of concept of the measurement principle (retro-reflector concept) Laser interferometer prototype Angular/lateral metrology breadboard Beam Steering Mechanism breadboard (CCN 1)
System support to laser interferometry tracking technology development for gravity field monitoring	2007-2010	TASI Turin Polytechnic	System concepts Investigation on electric propulsion technology and first tests of mini-RIT on NanoBalance facility (CCN1, 2)
Assessment of a Next Generation Mission for Monitoring the Variations of Earth's Gravity	2009 - 2012	TASI	System definition study Extended Study of the "Pendulum" Option (CCN1)
Next Generation Gravity Mission: AOCS Solutions and Technologies	2012-2014	TASI Turin Polytechnic	Control design and algorithm study • 4-tier control design (formation/orbit control/drag-free control/attitude control)
Miniaturised Gridded Ion Engine Breadboarding and Testing for Future Earth Observation Missions	2013-ongoing	ASL(D) TASI subCo	Wide thrust range [50µN to 2500µN] mini ion engine for NGGM drag- free and attitude control
Assessment of Satellite Constellations for Monitoring the Variations in Earth's Gravity Field (ADDCON)	2013-2016	Munich Uni. TASI consultant	Geophysical applications and anti-aliasing (Ocean tides)
High Stability Laser (HSL1 & HSL2)	2011-ongoing	STI FHG ILT, NPL,ADS(D)	High stability laser with fibre amplifier for interferometric earth gravity measurements Laser source & driver Laser Stabilization Unit (Cavity)
Consolidation of the System Concept For the Next Generation Gravity Mission	2015-2020	TASI STI	 System study update Trade-off of Transponder and retroreflector concepts
Development of the Lateral Angular Metrology for NGGM	2017-2019	TASI INRIM	APMS breadboard
Development of an Acceleration Insensitive, Thermal Noise Miligated OSRC Engineering Model	2017-ongoing	ADS(D) STI	Optical Stabilizing Reference Cavity breadboard
Proof-of-concept test for retroreflector interferometer for NGGM	2019-ongoing	STI, TASI, INRIM	Optical bench design and breadboard tests (retroreflector concept)

Overview

- In this case, Phase A planning is bound by delivery of what required for decision at Ministerial Council of end 2022 to pave the way to mission implementation
- Activities for this mission include:
 - Programme steering, interactions with NASA, MS, ESA-NASA Joint Engineering Team (JET), outreach
 - Continued / expanded science support activities
 - Two parallel system studies at Phase A level
 - Technology developments: (i) within system study contracts; (ii) via dedicated contracts (see PBEO/IPC papers)
 - End-to-end performance simulators and simulation campaigns
 - Internal work (including with ESA technology experts)

Phase A Main Activities Schedule Overview

Phase A System Studies: ITT issued 18.12.20, kick-off planned in April '21. Preliminary Requirements Review (PRR) in May-June '22. End of system activities by October '22. The contracts shall include technology developments in addition to the ones below.

End-to-end simulators: at mission level, in context of science studies; at system level (i.e. up to L1 products) within the system studies above

- **Laser Tracking Instrument (LTI) development:** RFQ being issued. Kick-off planned in March '21. Reach TRL 5 by end phase A for critical units, TRL 6 at complete LTI level by PDR.
- (Enhanced MicroSTAR) accelerometer development: RFQ issued to ONERA. Kick-off planned in April '21. Reach TRL 5 by end phase A for the core + new wire (further envisaged: TRL 6 for the same items by phase B kick-off and for complete accelerometer latest by PDR)
- **T5 Gridded Ion Engine thruster development:** RFQ issued to Mars Space Ltd. Kick-off planned in March '21. Reach TRL 5 by end phase A for neutraliser and critical items of thruster (further envisaged: TRL 6 for same items by SRR and finally for complete subsystem latest by PDR)
- **In-FEEP thruster development:** Kick-off planned in June '21. Reach TRL 5 by phase B kick-off for critical items (neutraliser, PPU), TRL 6 for complete subsystem by PDR (assuming FEEP selected in system studies)

Phase A System Studies: Objectives, Logic,

- <u>Nominal payload</u>: Laser Tracking Instrument (LTI), accelerometers, GNSS receiver (latter not analysed in our studies but for accommodation)
- <u>Optional payload</u> considered for accommodation, system and development implications,.. Not driving schedule/cost
- Strong inter-links payload-system-constellation designs

Study includes:

- analysis of mission / system functions and requirements for all elements, end-to-end system performance simulator, launch, prototype data processing algorithms up to L1, operations and ground segment basics
- analyse of architectural scenarios at constellation and satellite level in view of cooperation with NASA
- analysis of complexity / cost with respect to e.g. lifetime

Options for orbit control / drag compensation

Key requirement: orbit control in the pair <u>and</u> among the pairs

Continuous drag compensation provides orbit control + measurement performance improvement

→ orbit control is a must, while (continuous) drag compensation can be implemented to different extents depending on (i) targeted performance; (ii) selected orbit for the pair

We refer to 3 degree-of-freedom (DoF) drag compensation when only attitude control is performed

Options for trade-off therefore include:

- 3 DoF = attitude control only (orbit control by classical on/off thrusting)
- 4 DoF = GOCE case (along-track drag also compensated)
- 6 DoF = all forces and torques are compensated

In Phase 0, emphasis was put on most demanding/performant case: 6 DoF.

In Phase A, trade-offs will identify solution.

On/off thrusting can limit performance (cf GRACE) \rightarrow low-noise proportional (throttable) thrusting preferred

Options for this: cold gas type or electrical propulsion type (baseline at end Phase 0)

Mass change: the unique cross-cutting variable

- Implicitly assumed as backbone information for multiple Copernicus services (land/hydrology, climate, marine, emergency)
- Providing also the global context at medium and long term for all water related elements in atmosphere, land, ocean, ice, solid earth and thus climate
- TWS ECV and Crucial for many water cycle related ECVs in GCOS
- Unique in providing ground water information essential for water management and droughts/floods
- No operational gravity mission after GRACE-FO
- Immediate opportunities for a cross-cutting mission enabling a constellation in international cooperation

European Space Agency