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Figure 3. Modelled gravity disturbances of the (A,B,C) co-seismic (March 2011) and (D,E,F) post-seismic

(after six years and three months, June 2017 minus March 2011) signatures and (G,H,I) linear trends of the

TBG model obtained by inversion of (A,D,G) DDK3 and (B,E,H) DDK8 filtered and (C,F,I) unfiltered GRACE

data. For the sake of comparison, the gravity disturbance of the linear trends has been calculated for the same

amount of time of the post-seismic signature, i.e., six years and three months. The dash-dotted circle indicates

the circular cap of # = 6� centred at the CMT epicentre (Dziewonski et al. 1981; Ekström et al. 2012) in which

we spatially localize the GRACE data using 23 Slepian functions bandlimited to spherical harmonic degree

L = 90 (Simons et al. 2006). The straight dash-dotted line indicates the strike of 202� of the CMT solution and

the solid contour represents the fault surface. The green stars in panel B indicate the locations of maximum and

minimum co-seismic gravity signature.
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Figure 3. Modelled gravity disturbances of the (A,B,C) co-seismic (March 2011) and (D,E,F) post-seismic

(after six years and three months, June 2017 minus March 2011) signatures and (G,H,I) linear trends of the

TBG model obtained by inversion of (A,D,G) DDK3 and (B,E,H) DDK8 filtered and (C,F,I) unfiltered GRACE

data. For the sake of comparison, the gravity disturbance of the linear trends has been calculated for the same

amount of time of the post-seismic signature, i.e., six years and three months. The dash-dotted circle indicates

the circular cap of # = 6� centred at the CMT epicentre (Dziewonski et al. 1981; Ekström et al. 2012) in which

we spatially localize the GRACE data using 23 Slepian functions bandlimited to spherical harmonic degree

L = 90 (Simons et al. 2006). The straight dash-dotted line indicates the strike of 202� of the CMT solution and

the solid contour represents the fault surface. The green stars in panel B indicate the locations of maximum and

minimum co-seismic gravity signature.
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FILTER

Equivalent Gravity disturbance [µGal]

Gaussian radius co-seismic post-seismic linear trend periodic signals

[km] min/max min/max min/max 1 yr 0.5 yr 161 day

DDK3 240 �12.1 / 4.2 �0.9 / 9.2 �0.2 / 1.7 2.1 0.8 0.5

DDK4 215 �14.2 / 5.6 �1.4 / 10.2 �0.2 / 1.8 2.1 0.8 0.6

DDK5 180 �19.7 / 9.1 �3.0 / 11.7 �0.8 / 2.7 2.4 1.0 1.0

DDK6 165 �22.5 / 10.9 �3.7 / 12.1 �1.2 / 3.3 2.9 1.2 1.1

DDK7 145 �30.6 / 16.0 �5.1 / 13.3 �2.7 / 5.4 4.6 1.9 1.4

DDK8 135 �34.4 / 19.0 �5.6 / 13.9 �3.7 / 6.5 5.6 2.4 1.6

NONE – �59.0 / 43.0 �8.6 / 19.0 �40.3 / 45.9 35.8 55.0 34.1

Table 2. Maximum and minimum gravity disturbances of the co- and post-seismic signatures and of the linear

trends, and maximum amplitudes of the annual, semiannual and 161 day periodic signals obtained by inversion

of filtered and unfiltered GRACE data. The post-seismic gravity disturbance has been calculated in June 2017,

i.e., 6 years and 3 months after the 11 March 2011 Tohoku earthquake. For the sake of comparison, the gravity

disturbance of the linear trend has been calculated for the same amount of time. For each filter we also report

the equivalent Gaussian radius, from the comparison of the isotropic part of the anisotropic DDK filters with the

Gaussian ones (Kusche et al. 2009)
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Figure 2. Marginal PDF of the logarithm of the asthospheric viscosity, log ⌘A (in Pa s), and the lithospheric

thickness, H , obtained by inversion of (A) DDK3 and (B) DDK8 filtered and (C) unfiltered GRACE data. The

PDFs have been scaled so that their maximum value is 1.
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(a) (b) (b)

Figure 1. Fault slip over the slab interface of the Kamchatka–Kuril–Japan subduction zone (Hayes et al. 2012) obtained by inversion of (a) DDK3 and (b)
DDK8 filtered and (c) unfiltered GRACE data. The arrows and ellipses indicate the fault slip and the 1σ error calculated at the centre of each 80 × 40 km2

fault patch. The top and bottom edges of the fault are at 8.5 (the average depth of the trench) and 120 km depth, and the grey lines are given every 20 km depth.
The CMT focal mechanism (Dziewonski et al. 1981; Ekström et al. 2012) is also shown.

with the physico-mathematical model is often limited to the post-
seismic gravity disturbance cumulated during the whole time win-
dow spanned by the GRACE data after the earthquake, rather than
performed for each monthly GRACE product as in eq. (4). In the
end, the fact that the characteristic relaxation times τ i are estimated
for each geographic point (once again not exploiting any constraints
on their spatial pattern) makes specific prior information on them
necessary (Broerse et al. 2015).

The alternative approach based on the empirical orthogonal func-
tion (EOF) analysis (Chao & Liau 2019) still does not account for
the post-seismic signature. Furthermore, it simply decomposes the
data time-series (after a preliminary least square estimation) in dif-
ferent spatiotemporal signals and, so, it is not clear whether the EOF
recognized as the coseismic signature fully represents it or, instead,
some fraction of it leaks into the other spatiotemporal signals. In
light of this, although the EOF analysis is an effective approach
for assessing the presence of the coseismic signature into GRACE
data, its results cannot yet be used in an inverse method aimed at
constraining the fault slip, as well as the rheological stratification.

In light of this, the direct and joint method presented here makes
it simpler to recognize the co- and post-seismic signatures into
the GRACE data time-series by taking advantage of the physical
constraints to which they must obey. At the same time, by defini-
tion, it links the observations to the model parameters that we are
estimating through the choice of a specific physico-mathematical
model of the earthquake signatures. This means that the fitting to
the GRACE data depends on the realism of the adopted model and,
so, the estimate of the model parameters can be biased by modelling
errors (the assumption of a flat bathymetry and of a global ocean
layer in the framework of spherically symmetric Earth’s models can
lead to errors of a few tens of percentages for the coseismic geoid
anomaly of the 2011 Tohoku earthquake truncated at SH degree 40;
Broerse et al. 2014). On the other hand, we note that this disadvan-
tage characterizes also the common approach, when the estimated
earthquake signatures from eq. (5) are used for constraining the
model parameters because of the inevitable choice of an Earth’s
model.

2.3 Inverse problem

In order to define the posteriori probability density function (PDF),
we rely on a previously developed fully Bayesian approach for GPS
data inversion (Fukuda & Johnson 2008; Cambiotti et al. 2017). This
approach introduces two hyperparameters, α2 and β2, that weigh
information from observations and from prior constraints and that
shall be jointly estimated with the model parameters. In particular,
α2 accounts for modelling errors or biases in the estimate of the
observational errors from the data processing (Yabuki & Matsuúra
1992; Cambiotti et al. 2017).

As it concerns the prior constraints, we only require that the fault
slip is smooth to some degree in order to make the inverse problem
overdetermined and avoid implausible results. The measure of the
smoothness is defined as the average of the second-order derivatives
of the slip over the fault surface (Yabuki & Matsuúra 1992) and
how much the slip is smooth is determined by the estimate of
β2. Different from previous geodetic data inversions (Ozawa et al.
2012; Zhou et al. 2018), we do not consider any prior constraint
about the slip direction (like positivity constraints). Furthermore,
our inverse method differs from the Akaike Bayesian Information
Criteria (ABIC, Yabuki & Matsuúra 1992) because we average the
posteriori PDF also for the two hyperparameters (Fukuda & Johnson
2008; Cambiotti et al. 2017) rather than fixing them at their most
likely values.

In the end, we do not consider any prior information about the
rheological parameters and hyperparameters and, so, their prior (or
homogeneous) PDF (Tarantola 2005) simply reads

p(v, α2,β2) ∝ 1, (6)

where v = (H, log ηA, log R) is the array collecting the rheological
model parameters. Note that we use the logarithmic scale for ηA

and R because these parameters can span a few orders of magnitude
about which we know very little.
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trends, and maximum amplitudes of the annual, semiannual and 161 day periodic signals obtained by inversion

of filtered and unfiltered GRACE data. The post-seismic gravity disturbance has been calculated in June 2017,

i.e., 6 years and 3 months after the 11 March 2011 Tohoku earthquake. For the sake of comparison, the gravity

disturbance of the linear trend has been calculated for the same amount of time. For each filter we also report

the equivalent Gaussian radius, from the comparison of the isotropic part of the anisotropic DDK filters with the

Gaussian ones (Kusche et al. 2009)
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Figure 2. Marginal PDF of the logarithm of the asthospheric viscosity, log ⌘A (in Pa s), and the lithospheric

thickness, H , obtained by inversion of (A) DDK3 and (B) DDK8 filtered and (C) unfiltered GRACE data. The

PDFs have been scaled so that their maximum value is 1.
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DDK4 215 �14.2 / 5.6 �1.4 / 10.2 �0.2 / 1.8 2.1 0.8 0.6

DDK5 180 �19.7 / 9.1 �3.0 / 11.7 �0.8 / 2.7 2.4 1.0 1.0

DDK6 165 �22.5 / 10.9 �3.7 / 12.1 �1.2 / 3.3 2.9 1.2 1.1

DDK7 145 �30.6 / 16.0 �5.1 / 13.3 �2.7 / 5.4 4.6 1.9 1.4

DDK8 135 �34.4 / 19.0 �5.6 / 13.9 �3.7 / 6.5 5.6 2.4 1.6

NONE – �59.0 / 43.0 �8.6 / 19.0 �40.3 / 45.9 35.8 55.0 34.1

Table 2. Maximum and minimum gravity disturbances of the co- and post-seismic signatures and of the linear

trends, and maximum amplitudes of the annual, semiannual and 161 day periodic signals obtained by inversion

of filtered and unfiltered GRACE data. The post-seismic gravity disturbance has been calculated in June 2017,

i.e., 6 years and 3 months after the 11 March 2011 Tohoku earthquake. For the sake of comparison, the gravity

disturbance of the linear trend has been calculated for the same amount of time. For each filter we also report

the equivalent Gaussian radius, from the comparison of the isotropic part of the anisotropic DDK filters with the

Gaussian ones (Kusche et al. 2009)
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Figure 2. Marginal PDF of the logarithm of the asthospheric viscosity, log ⌘A (in Pa s), and the lithospheric

thickness, H , obtained by inversion of (A) DDK3 and (B) DDK8 filtered and (C) unfiltered GRACE data. The

PDFs have been scaled so that their maximum value is 1.
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Figure 4. (A,B) Modelled and observed gravity disturbances (black and gray lines) by inversion of the DDK8

filtered GRACE data at the two geographical locations where we model the (A) maximum and (B) minimum co-

seismic signature (green stars in fig. 3B), that is at (144.5�E, 36.9�N) and (139.9�E, 38.6�N), respectively. The

TBG model has been removed from both time series, which thus represent only the co- and post-seismic sig-

natures. (C,D) TBG model and residuals (black and gray lines). The lightgray area represents the observational

uncertainties scaled by the factor ↵ = 2.4, with ↵
2 = 5.9 being the hyper-parameter estimated by GRACE data

inversion.
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Figure 4. (A,B) Modelled and observed gravity disturbances (black and gray lines) by inversion of the DDK8

filtered GRACE data at the two geographical locations where we model the (A) maximum and (B) minimum co-

seismic signature (green stars in fig. 3B), that is at (144.5�E, 36.9�N) and (139.9�E, 38.6�N), respectively. The

TBG model has been removed from both time series, which thus represent only the co- and post-seismic sig-

natures. (C,D) TBG model and residuals (black and gray lines). The lightgray area represents the observational

uncertainties scaled by the factor ↵ = 2.4, with ↵
2 = 5.9 being the hyper-parameter estimated by GRACE data

inversion.
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GRACE Follow-On [2] have improved our understanding of many mass change processes, such as the
global water cycle, ice mass melting of ice sheets and glaciers, changes in ocean mass closely related to
eustatic sea level rise, which are subtle indicators of climate change, but also gravity changes related to
solid Earth processes such as big earthquakes or glacial isostatic adjustment (GIA). The Gravity field and
steady-state Ocean Circulation Explorer (GOCE) mission [3] has improved our knowledge of long-term
mass distribution and has provided the physical reference surface of the geoid, with a resolution down
to 70–80 km.

The main objective of NGGMs is not only the continuation and extension of existing mass transport
time series, but also a significant gain in spatial and temporal resolution. Correspondingly, the science
and user needs of NGGMs were defined in [4]. In several previous studies, di↵erent mission concepts
have been studied in detail, with emphasis on orbit design and resulting spatial-temporal ground track
pattern, enhanced processing and parameterization strategies, and improved post-processing/filtering
strategies in order to reduce temporal aliasing e↵ects, which are one of the main error sources of current
temporal gravity field solutions [5]. The typical GRACE-type concept of two satellites (satellite pair)
following each other on the same orbit with an inter-satellite distance of about 200 km observes only
the along-track component of the Earth’s gravity field, and therefore leads to a very anisotropic error
structure and the typical striping patterns in the resulting temporal gravity solutions. An alternative
mission concept is a satellite pair in pendulum configuration, where the trailing satellite performs
a pendulum motion with respect to the leading satellite, thus observing not only the along-track,
but also parts of the cross-track component. This can be realized by a shift of the right-ascension of
the satellites of the second pair, resulting in a shifted orbit plane of the second satellite pair compared
to the first one. Based on this concept, in 2010 the mission proposal “e.motion —Earth System Mass
Transport Mission” [6] was submitted in response to ESA’s Earth Explorer 8 call. Another promising
mission scenario is a double-pair constellation being composed of two in-line pairs, the so-called
Bender configuration [7]. It is composed of a polar pair similar to the GRACE-type concept, and an
inclined pair with an inclination of 65–70 degrees. An example of the resulting ground-track pattern of
such a Bender constellation is shown in Figure 1.
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Figure 1. Ground track pattern of Bender configuration of Scenario A (cf. Table 1). The red curve shows
the 9-day near-repeat ground track pattern of the polar satellite pair, and the blue curve the ground
track of the inclined pair with an inclination of 70�. The zoom-in illustrates the resulting regular spatial
sampling pattern as well as the fact that the direction of the inter-satellite ranges is di↵erent.
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A REALISTIC AND SIMPLE WAY OF DETECTING EARTHQUAKES
We assume to know the spatial and temporal pattern of the earthquake gravity signature and we fit this pattern
to the synthetic data by estimating a scaling factor (and its uncertainity)

EARTHQUAKE DETECTION

SENSITIVITY. We assume to know also the AOHIS−DEAL model. We discriminate the earthquake signature
only from the static gravity field (and the observational error).

gobs(t)� gaohis(t) = s+ � q(t) + ✏(t)

gobs(t) = s+K(t)m+ � q(t) + ✏(t)

N(0,�2E)

Xn =
h�ni � 1

��,n

N(1, 1)

X = 0.03± 0.92

X = 0.07± 2.97

� = 1

� = h�i± ��,n

N(h�i,�2
�)

1

AOHIS −DEAL
ESAESM

QUAKE
signature

STATIC
modellingDATA SCALING 

FACTOR
ERROR

observational

1 � �1 � · · · � �NS � 0.5 > �NS+1 � · · · � �(L+1)2

Z

C
Sk(✓,')

2 d⌦ = 4⇡ �k

�k > 0.5

(
�k � 0.5 k  NS

�k < 0.5 k > NS

k = 1, · · · , NS

L = 140

(L+ 1)2 = 19881

NS ⇡ (L+ 1)2
1� cos↵

2

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,')

g(✓,', t) =
NSX

k=1

fk(t)Sk(✓,') +

(L+1)2X

NS+1

fk(t)Sk(✓,')

N ⇡ (L+ 1)2
A

4⇡

N ⇡ (L+ 1)2
�⌦

4⇡

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') ⇡
NX

k=1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NX

1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NSX

1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NX

1

fk(t)Sk(✓,')

gobs(t)� gaohis(t) = s+ � q(t) + ✏(t)

� = h�i± �

gobs(t) = s+K(t)m+ � q(t) + ✏(t)

N(0,↵E)

Xn =
h�ni � 1

��,n

� = 1.21± 0.32

� = 1.241± 0.52

N(1, 1)

X = 0.03± 0.92

X = 0.07± 2.97

� = 1

�n = h�ni± �n

Xn =
h�ni � 1

�n

N(h�i,�2
�)

1

DISCRIMINATION. We also fit a simple AOHIS−DEAL model (linear trends and periodic signals) in order to
check the possibility of discriminating the earthquake signatures from the signatures by other physical process.

AOHIS −DEAL
modelling

QUAKE
signature

STATIC
modellingDATA SCALING 

FACTOR
ERROR

observational + modelling

gobs(t)� gaohis(t) = s+ � q(t) + ✏(t)

gobs(t) = s+K(t)m+ � q(t) + ✏(t)

N(0,�2E)

Xn =
h�ni � 1

��,n

N(1, 1)

X = 0.03± 0.92

X = 0.07± 2.97

� = 1

� = h�i± ��,n

N(h�i,�2
�)

1

1 � �1 � · · · � �NS � 0.5 > �NS+1 � · · · � �(L+1)2

Z

C
Sk(✓,')

2 d⌦ = 4⇡ �k

�k > 0.5

(
�k � 0.5 k  NS

�k < 0.5 k > NS

k = 1, · · · , NS

L = 140

(L+ 1)2 = 19881

NS ⇡ (L+ 1)2
1� cos↵

2

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,')

g(✓,', t) =
NSX

k=1

fk(t)Sk(✓,') +

(L+1)2X

NS+1

fk(t)Sk(✓,')

N ⇡ (L+ 1)2
A

4⇡

N ⇡ (L+ 1)2
�⌦

4⇡

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') ⇡
NX

k=1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NX

1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NSX

1

fk(t)Sk(✓,')

g(✓,', t) =
LX

`=0

X̀

m=�`

g`m(t)Y`m(✓,') =

(L+1)2X

k=1

fk(t)Sk(✓,') ⇡
NX

1

fk(t)Sk(✓,')

gobs(t)� gaohis(t) = s+ � q(t) + ✏(t)

� = h�i± �

gobs(t) = s+K(t)m+ � q(t) + ✏(t)

N(0,↵E)

Xn =
h�ni � 1

��,n

� = 1.21± 0.32

� = 1.241± 0.52

N(1, 1)

X = 0.03± 0.92

X = 0.07± 2.97

� = 1

�n = h�ni± �n

Xn =
h�ni � 1

�n

N(h�i,�2
�)

1



EARTHQUAKE DETECTION 1063Surveys in Geophysics (2020) 41:1049–1074 

1 3

for all the others because it is expected to be stationary in time due to the relative orbit 
design of the NGGM.

From the covariance matrix of the Stokes coefficients, we also obtain the correspond-
ing 23 × 23 covariance matrix of the Slepian coefficients by error propagation. Another 
simplification adopted is that the NGGM simulation has been made only for the MW = 7 
earthquakes. Synthetic gravity data for earthquakes of other magnitudes, instead, have been 
obtained by simply removing the gravity signatures of the MW = 7 earthquakes and add-
ing those of earthquakes of the desired magnitude. We do not expect that this simplifica-
tion alters our conclusion because the amplitude of the time-dependent gravity signatures 
caused by earthquakes is comparable or smaller than other time-variable contributions of 
the updated ESA-ESM. Furthermore, most of the noise has been shown to come from the 
temporal aliasing of AOHIS. Compared to the latter, the post-seismic signal is very slow 
and will not contribute significantly to the error which would remain dominated by AOHIS 
temporal aliasing.

According to this framework, for each earthquake and 28-day period, we obtain the Sle-
pian coefficients of the NGGM synthetic data, !i , of the AOHIS contributions, !i and of the 
earthquake signature, !i , with the subscript i indicating the ith period. Then, we formally 
define the first inverse problem by the following relation between data and model

where ! are the Slepian coefficients describing the static gravity field and ! is the scaling 
factor of the earthquake signature that we aim to estimate and that, by definition, we expect 

(4)!i − "i = # + ! $i + !i

Fig. 12  23 Slepian functions bandlimited to SH degree 140 and optimally concentrated in a spherical cap of 
4◦ (about 440 km; dashed circle). Here, the centre of the cap is arbitrary

SPATIAL LOCALIZATION IN SPHERICAL
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CONCENTRATED SLEPIAN FUNCTIONS

𝐿 + 1 2 = 19981
TIME SERIES OF
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This is better shown in Figs. 18 and 19, after the removal of the modelled AOHIS con-
tributions. For the 62nd earthquake, we note that the residuals are comparable with the 
earthquake signature and are characterized by temporal correlations mainly attributable to 
modelling errors of the annual and semiannual periodic signals. These considerations hold 

Fig. 16  Time series of modelled and observed Slepian coefficients (black and grey lines, respectively) 
for the 62nd MW = 7.8 earthquake and according to the second inverse problem, Eq. (5). The modelled 
time series thus represent the earthquake gravity signature scaled by the estimated scaling factor ! and the 
modelled AOHIS contributions in terms of linear trends and annual and semiannual periodic signals. For 
the sake of visualization, the modelled static gravity field has been removed and the vertical scale changes 
among the panels. The number in lower left corner of each panel indicates the Slepian function to which the 
time series refers (as they are ordered in Fig. 12)

Fig. 17  As Fig. 16 but for the 64th MW = 7.8 earthquake
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also for the case of the 64th earthquake, although its gravity signature, especially the post-
seismic one, can be comparable to or even greater than the residuals as, for example, in the 
1st, 2nd, 7th and 8th time series.

From this visual inspection of the results, we understand that a better modelling of the 
AOHIS contributions can lead to substantial improvements in the detection of the earth-
quake signature. For instance, rather than the deterministic approach adopted here, a sto-
chastic model of slow-varying trends and of the annual and semi-annual signals (Didova 
et al. 2016) would reduce the modelling error, thus making the earthquake signature even 

Fig. 18  As Fig. 16, but the modelled AOHIS contributions (i.e., the estimated linear trends and annual and 
semiannual periodic signals) have been removed in order to focus on the fitting of the earthquake signature

Fig. 19  As Fig. 18 but for the 64th MW = 7.8 earthquake
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Slepian coefficient of the static gravity field, contributes to the estimate of the scaling 
factor. In this respect, leaving aside the quite simple issue of estimating the static grav-
ity field, we can say that, for each earthquake, we have a few time series for constraining 
just one model parameter and this explains why, at least for these two representative 

Fig. 13  Time series of modelled and observed Slepian coefficients (black and grey lines, respectively) 
for the 62nd MW = 7 earthquakes and according to the first inverse problem, Eq. (4). The modelled time 
series thus represent the earthquake gravity signature scaled by the estimated scaling factor ! , and the exact 
AOHIS contributions have been removed by the observed time series. For the sake of visualization, the 
modelled static gravity field has also been removed and the vertical scale changes among the panels. The 
number in lower left corner of each panel indicates the Slepian function to which the time series refers (as 
they are ordered in Fig. 12)

Fig. 14  As Fig. 13 but for the 64th MW = 7 earthquakes
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Figure 4.22. Degree-RMS rate of change of the gravity disturbances shown in Fig. 4.21 (due 
to the seismic cycle of 400 yr, assuming a full fault locking at the trench and for an 
asthenospheric viscosity of 1019 Pa s) at times t=100, 200, 300 and 400 years.  
 

4.3.6. The detectability of the gravity signature caused by the seismic cycle 
In the early phase of the seismic cycle, the post-seismic effects of the last earthquake can make 
the evolution in time of the inter-seismic gravity signature different from a simple linear trend, even 
on short time intervals such as the NGGM operational period of about 10 years. After this early 
phase, instead, the rates of changes of the inter-seismic gravity signature vary slowly with time 
and, so, the inter-seismic gravity disturbances look like simple linear trends during the NGGM 
operational period. In this case, the only way to discriminate linear trends of different nature 
requires the knowledge of the spatial pattern of the gravity disturbance caused by each 
geophysical process. This requirement is still far from our capability, at least not for all the potential 
sources of linear trends, and, so, we have decided to limit our study on the detectability of the 
inter-seismic gravity signature to a geographical region where we expect that the inter-seismic 
one is the dominant. As shown in Fig.s 4.23 and 4.24, this is the case for the Kamchatka-Kuril-
Japan subduction zone and its surroundings considered in Section 4.3.5. The amplitude of the 
AOHIS linear trends, indeed, does not exceed 0.3 μGal/yr, while that of inter-seismic gravity 
signature can be of the order of 1 μGal/yr. We also note that the spatial patterns are quite different 
from each other and this make it even simpler to recognize the inter-seismic signature in the 
NGGM data. In particular, the stripes characterizing the spatial pattern of the AOHIS linear trends 
are likely a consequence of the truncation at SH d/o 140 of the 2004 Sumatra earthquake gravity 
signature included in the Solid Earth (S) component of the ESAESM. 
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Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 

In order to define a rigorous method to decide whether the inter-seismic gravity disturbances can 
be detected or not by the NGGM, we follow a strategy similar to the second inverse problem used 
for the earthquake detectability (see Section 4.3.3), but for the fact that we do not longer model 
the linear trends of the AOHIS (i.e., being assumed to be zero). In this case the equation relating 
the data to the model reads 

 

𝒈௦ሺ𝑡ሻ ൌ ࢙   𝐊ሺtሻ 𝒎  𝛾 ሺ𝑡ሻ   ࣕሺ𝑡ሻ        4.5 

 

where, now,  and 𝒎 are the arrays collecting the Slepian coefficients of the inter-seismic gravity 
disturbances and of the only annual and semi-annual periodic signals, respectively, and 𝐊 is the 
matrix describing the linear relation between the annual and semi-annual periodic signals and the 
time series of Slepian coefficients. We note that, during the NGGM operational period and as just 
discussed, the inter-seismic gravity disturbance  ሺ𝑡ሻ can be approximated by a linear trend 

 

ሺ𝑡ሻ ൌ ሺ𝑡ሻ  𝑡 ′ሺ𝑡ሻ          4.6 

 

where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 
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where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 
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Linear trends from the updated ESA Earth System Model (AOHIS contributions) 
and comparison with those from the seismic cycle.

              
 

CONTRACT N: 
 
DATE: 

400123555/18/I-NB 
 
July 2019 

ISSUE:   01 draft Page:  64/91 
 

 

Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 

In order to define a rigorous method to decide whether the inter-seismic gravity disturbances can 
be detected or not by the NGGM, we follow a strategy similar to the second inverse problem used 
for the earthquake detectability (see Section 4.3.3), but for the fact that we do not longer model 
the linear trends of the AOHIS (i.e., being assumed to be zero). In this case the equation relating 
the data to the model reads 

 

𝒈௦ሺ𝑡ሻ ൌ ࢙   𝐊ሺtሻ 𝒎  𝛾 ሺ𝑡ሻ   ࣕሺ𝑡ሻ        4.5 

 

where, now,  and 𝒎 are the arrays collecting the Slepian coefficients of the inter-seismic gravity 
disturbances and of the only annual and semi-annual periodic signals, respectively, and 𝐊 is the 
matrix describing the linear relation between the annual and semi-annual periodic signals and the 
time series of Slepian coefficients. We note that, during the NGGM operational period and as just 
discussed, the inter-seismic gravity disturbance  ሺ𝑡ሻ can be approximated by a linear trend 

 

ሺ𝑡ሻ ൌ ሺ𝑡ሻ  𝑡 ′ሺ𝑡ሻ          4.6 

 

where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 

              
 

CONTRACT N: 
 
DATE: 

400123555/18/I-NB 
 
July 2019 

ISSUE:   01 draft Page:  64/91 
 

 

Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 

In order to define a rigorous method to decide whether the inter-seismic gravity disturbances can 
be detected or not by the NGGM, we follow a strategy similar to the second inverse problem used 
for the earthquake detectability (see Section 4.3.3), but for the fact that we do not longer model 
the linear trends of the AOHIS (i.e., being assumed to be zero). In this case the equation relating 
the data to the model reads 

 

𝒈௦ሺ𝑡ሻ ൌ ࢙   𝐊ሺtሻ 𝒎  𝛾 ሺ𝑡ሻ   ࣕሺ𝑡ሻ        4.5 

 

where, now,  and 𝒎 are the arrays collecting the Slepian coefficients of the inter-seismic gravity 
disturbances and of the only annual and semi-annual periodic signals, respectively, and 𝐊 is the 
matrix describing the linear relation between the annual and semi-annual periodic signals and the 
time series of Slepian coefficients. We note that, during the NGGM operational period and as just 
discussed, the inter-seismic gravity disturbance  ሺ𝑡ሻ can be approximated by a linear trend 

 

ሺ𝑡ሻ ൌ ሺ𝑡ሻ  𝑡 ′ሺ𝑡ሻ          4.6 

 

where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 



              
 

CONTRACT N: 
 
DATE: 

400123555/18/I-NB 
 
July 2019 

ISSUE:   01 draft Page:  64/91 
 

 

Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 

In order to define a rigorous method to decide whether the inter-seismic gravity disturbances can 
be detected or not by the NGGM, we follow a strategy similar to the second inverse problem used 
for the earthquake detectability (see Section 4.3.3), but for the fact that we do not longer model 
the linear trends of the AOHIS (i.e., being assumed to be zero). In this case the equation relating 
the data to the model reads 

 

𝒈௦ሺ𝑡ሻ ൌ ࢙   𝐊ሺtሻ 𝒎  𝛾 ሺ𝑡ሻ   ࣕሺ𝑡ሻ        4.5 

 

where, now,  and 𝒎 are the arrays collecting the Slepian coefficients of the inter-seismic gravity 
disturbances and of the only annual and semi-annual periodic signals, respectively, and 𝐊 is the 
matrix describing the linear relation between the annual and semi-annual periodic signals and the 
time series of Slepian coefficients. We note that, during the NGGM operational period and as just 
discussed, the inter-seismic gravity disturbance  ሺ𝑡ሻ can be approximated by a linear trend 

 

ሺ𝑡ሻ ൌ ሺ𝑡ሻ  𝑡 ′ሺ𝑡ሻ          4.6 

 

where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 

              
 

CONTRACT N: 
 
DATE: 

400123555/18/I-NB 
 
July 2019 

ISSUE:   01 draft Page:  64/91 
 

 

Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 

In order to define a rigorous method to decide whether the inter-seismic gravity disturbances can 
be detected or not by the NGGM, we follow a strategy similar to the second inverse problem used 
for the earthquake detectability (see Section 4.3.3), but for the fact that we do not longer model 
the linear trends of the AOHIS (i.e., being assumed to be zero). In this case the equation relating 
the data to the model reads 

 

𝒈௦ሺ𝑡ሻ ൌ ࢙   𝐊ሺtሻ 𝒎  𝛾 ሺ𝑡ሻ   ࣕሺ𝑡ሻ        4.5 

 

where, now,  and 𝒎 are the arrays collecting the Slepian coefficients of the inter-seismic gravity 
disturbances and of the only annual and semi-annual periodic signals, respectively, and 𝐊 is the 
matrix describing the linear relation between the annual and semi-annual periodic signals and the 
time series of Slepian coefficients. We note that, during the NGGM operational period and as just 
discussed, the inter-seismic gravity disturbance  ሺ𝑡ሻ can be approximated by a linear trend 

 

ሺ𝑡ሻ ൌ ሺ𝑡ሻ  𝑡 ′ሺ𝑡ሻ          4.6 

 

where the prime stands for the time derivative (and so ′ is the rate of change of the inter-seismic 
gravity disturbance) and 𝑡 is a time during the NGGM operational period. 

INTER-SEISMIC GRAVITY RATES

              
 

CONTRACT N: 
 
DATE: 

400123555/18/I-NB 

 

July 2019 

ISSUE:   01 draft Page:  62/91 
 

 

 

Figure 4.21. As Fig. 4.20 but for gravity disturbance rates. 
 
It is noteworthy to consider also the respective rates of change of the gravity disturbances shown 

in Fig. 4.21. In the early phase of the seismic cycle, we have the largest values of gravity rates 

(with peak-to-peak values of 7.6, 6.5 and 4.1 μGal/yr at t=0, 5 and 20 years) due to the relaxation 

by viscous flow of the elastic stress induced by the last earthquakes. At later times, instead, they 

decrease and vary slowly with time, reaching peak-to-peak values of about 2 μGal/yr or even less. 

From the spectral analysis of the rate of change of the gravity disturbances shown in Fig. 4.22, 

we can also provide a rough estimate of the characteristic spatial scales of these signals on the 

basis of the SH degree to which the degree-RMS reaches its maximum, which are about 230~330 

km. 
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Figure 4.23. Linear trends of the gravity disturbances caused by the AOHIS contributions 
obtained by simple linear fitting to the time series of the gravity disturbances of the 
ESAESM ([RD 11]), bandlimited to SH d/o 140. 

 

 
Figure 4.23. Comparison of the linear trends caused by the AOHIS contributions with those 
caused by the seismic cycle of 400 years and for an asthenospheric viscosity of 1019 Pa s 
(left and right panels, respectively), bandlimited to SH d/o 140. 
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Figure 4.25. Four representative Slepian functions (left panels) and the observed and 
modelled gravity disturbances (blue and red lines, respectively) for the seismic cycle of 
400 yr and for asthenospheric viscosities of 1018 and 1019 Pa s (middle and right panels, 
respectively). We have assumed half fault locking at the trench, 𝑿ሺ𝒛 ൌ ሻ ൌ  . . The green 
lines represent the linear trends of the inter-seismic gravity disturbances. 
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respectively). We have assumed half fault locking at the trench, 𝑿ሺ𝒛 ൌ ሻ ൌ  . . The green 
lines represent the linear trends of the inter-seismic gravity disturbances. 
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Figure 2.1: Bandlimited eigenfunctions that are optimally concentrated
within a Slepian cap of radius 3°
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Figure 4.3: Observed, background and long-term trend component time se-
ries of Slepian coefficients (black, green and red lines). The lightred filled
area represents the estimated 68 per cent confidence interval of the stochastic
component.
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Figure 2.1: Bandlimited eigenfunctions that are optimally concentrated
within a Slepian cap of radius 3°
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Figure 4.2: Square root of the power spectral density (RPSD) of the ob-
served, background and stochastically modelled Slepian coefficient time se-
ries (black, green and red lines) after the removal of the deterministic linear
trend. The blue line represent the RPSD of the Slepian coefficient time series
of the true error (observed minus backround).

by the Kalman filter. The stochastic model is sistematically lower in the
higher frequencies compared to the true model and this too points to some
unmodelized signal. These discrepancies can be neglected: we are interested
in modelising the long trend variations, all of which are visible in the lowest
frequencies where there is a good agreement between the true model and our
model.

Figures 4.3 - 4.5 shows respectevly the trend, annual and semiannual
components for the time series of Slepian coefficients. Figure 4.3 is the only
one where we confront the background (green line) and the observed time-
series (green line) with our model (red line), we see again that the modelled
data are in good agreement with the background, even though it doesn’t
exactly reproduce it because of some un-modellized signals.

SLEPIAN FUNCTIONS OBSERVED = INPUT + ERROR ≈MODELLED
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Figure 4.6: Correlation matrices of the (A) trend, (B) annual and (C) semi-
annual components and of the (D) error structure obtained by the likelihood
optimization. (E) Standard deviations of the trend, annual and semiannual
components and of the error structure (solid, dashed, dotted and dashdotted
lines, respectively)

Correlation matrices of the (A) trend, (B) annual and (C) semi-annual components and of
the (D) error structure obtained by the likelihood optimization. (E) Standard deviations of
the trend, annual and semiannual components and of the error structure (solid, dashed,
dotted and dashdotted lines, respectively).
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Figure 2.1: Bandlimited eigenfunctions that are optimally concentrated
within a Slepian cap of radius 3°
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End-to-End Performance simulations

An end-to-end measurement performance
simulator is developed, tested and validated
using realistic and / or actual measurements.
The performance model used is applicable
to a predefined range of conditions
(including realistic uncertainties of natural
and observational nature) and can be used
to address the needs originating from the
science requirements in an end-to-end
manner. Retrieval algorithms applicable for a
realistic range of error sources (both
geophysical and technical) are demonstrated
against a pre-defined performance metric
reflecting observation and measurement
requirements.
the mass variation measurements. 

SCIENTIFIC READINESS LEVEL (SLR) 5

Is an E2E simulator in place and are the most important processes and input
parameters (including uncertainty estimates) properly represented? Yes.

Is an error propagation model in place allowing the rigorous computation of
uncertainties (e.g. accounting for co-variant error effects) for measurements and
observations? Yes, although the estimated covariance must be still to be
validated aginst the true error.

Has a set of realistic test scenarios been established and are they scientifically
justified? Yes and no. More work can be done to refine the best scenario in
relation with the user needs and strategies.

Is the simulator tested and validated and applied for the predefined set of
scenarios? Yes.

Are all assumptions of the performance simulator documented and critically
discussed? Yes and no. More tests should be done.

Is there a demonstrated interest of users? Yes.

Is there a first evaluation of (simulated or measured data) in applications? Yes.

NGGM as MAGIC, OBJECTIVE 8: to support monitoring applications of geo-hazards (including Mw 8 earthquakes and Mw 7 as
target) over few hundred kilometres areas and deep interior properties and dynamics over large spatial scales (e.g. 6.000 km)
for estimating Body tides at millimetre accuracy.


