

La missione CHEOPS ASI, 25 Sep 2013

Isabella Pagano¹ & Roberto Ragazzoni²

INAF – Osservatorio Astrofisico di Catania INAF – Osservatorio Astronomico di Padova

isabella.pagano@inaf.it, roberto.ragazzoni@inaf.it

1. 2.

ESA small missions requirements

Science

top rated science in any area of space science

Cost

total cost < 150 M€

cost to ESA: not to exceed 50 M€

Schedule

developed and launched within 4 years (end of 2017)

call issued	March 3, 2012
proposal due	June 15, 2012
mission selection	October 19, 2012
mission adoption	Nov 2013/ Feb 2014
launch	2017

Mission summary

Name	CHEOPS (CHaracterizing ExOPlanet Satellite)					
Primary science goal	Measure the radius of planets transiting bright stars to 10% accuracy					
Targets	Known exoplanet host stars with a V-magnitude < 12.0 anywhere on the sky					
Wavelength	Visible range : 400 to 1100 nm					
Telescope	707 cm ² effective aperture reflective on-axis telescope (30 cm 滝)					
Orbit	LEO sun-synchronous, LTAN 6am, 620-800 kn	n				
Lifetime	3.5 years					
Туре	S-class					

Country	Institutes	Contacts		
СН	University of Bern (project lead) University of Geneva Swiss Space Center (EPFL) ETH-Z	Willy Benz, Nicolas Thomas Didier Queloz Anton Ivanov Michael Meyer		
Austria	Institut für Weltraumforschung, Graz	Wolfgang Baumjohann		
Belgium	Centre Spatial de Liège Université de Liège	Etienne Renotte Michaël Gillon		
France	Laboratoire d'astrophysique de Marseille	Magali Deleuil		
Germany	DLR Institute for Planetary Research DLR Institute for Optical Sensor Systems	Tilman Spohn		
Hungary	Konkoly Observatory	Laszlo Kiss		
Italy	Osservatorio Astrofisico di Catania – INAF Osservatorio Astronomico di Padova - INAF Università di Padova	Interest of H i Isabella Pagano Roberto Ragazzoni Giampaolo Piotto		
Portugal	Centro de Astrofisica da Universidade do Porto Deimos Engenharia	Nuno C. Santos Antonio Gutiérrez		
Sweden	Onsala Space Observatory, Chalmers University University of Stockholm	R. Liseau G. Olofssor	า	
UK	University of Warwick	Don Polla	Payload	
		<u> </u> (Ground segmen	

CHEOPS SCIENCE OBJECTIVES

CHEOPS driver: we need planetary sizes

Mass-distance diagram for exoplanets (white) and Solar System planets. Confirmed transiting exoplanets are shown in blue.

Kepler sizes not enough?

Science objectives I. Mass-radius relation for planets below the mass of Saturn

Mass-radius diagram for exoplanets (blue) and Solar System planets and largest moons. For exoplanets, the radius is measured from the transit light curve and the mass from velocimetry. The mean density is represented by the size of the points; The larger the symbol, the denser the planet.

Size & mass distributions of planets orbiting G- and K-type stars.

corrected for survey incompleteness for small/low-mass planets

Howard, 2013, Science 340, 572

CHEOPS provides direct insights into the structure (e.g. presence of a gaseous envelope) and/or composition of the planet.

CHEOPS will improve both the sample size as well as the precision of the measurements.

Science objectives

2. New targets for future characterization facilities with spectroscopic capabilities

3. Constraints on planet migration paths

Different migration pattern can be inferred by density measurements

Semi–major axis [AU]

Science objectives

4. Energy transport in hot Jupiter atmospheres

Optical phase curve of a V=10.5 mag star by Kepler

Combination of the light reflected by the atmosphere of the planet as well as the thermal emission of the atmosphere.

HAT-P-7b

CHEOPS: Mission Goals

I.To search for shallow transits on stars already known to host planets

- transit signal-to-noise ratio of 10 for an Earth-size planet
 - period of 60 days
 - on G5 dwarf stars with V-magnitude brighter than 9th.
- identify the presence or absence of a significant atmosphere for planets with masses ranging from Neptune to Earth.
- 2. To provide precision radii for a number of hot Neptune planets orbiting stars brighter than 13th V magnitude and to search for co-aligned smaller mass planets.
- signal-to-noise ratios above 30,
- radii with a precision of 10% or better.
- 3. To measure the phase modulation due to the different contribution of the dayside of hot Jupiter planets and in some cases to measure the secondary eclipse. These measurements provide information about the energy flux in the atmosphere of the planet.

Science Requirements

The current noise limits (total noise) are:

- V mag <= 9:
 - 6 hours, 10 ppm (100 ppm at SN 20)
 - 20 minutes, 50 ppm
 - I minute, I50 ppm
- V mag <= 12.0 (goal 13):
 - 3 hours, 85 ppm (2500 ppm at SN 30)
 - ► I minute, II00 ppm

Sky coverage:

• 25% of the sky with 2/3 in the southern hemisphere should be visible for a cumulative duration of 15 days per year with interruptions less than 20 minutes per orbit

- 50% of the whole sky (goal 75% -60..+60) should be accessible
 - for a minimum of 60 days of observation per year and per target
 - Interruption of the orbit less than 50% of the orbit time

Exposure time and data rate:

- Exposure time shall be variable from 1 to 60 s
- Donwlink 60 s exposures co-added 200x200 px

Mission Duration:

• 3.5 yr mission design lifetime

CHEOPS Sky visibility

The colour gradient indicate the time that CHEOPS could spent pointing at given coordinates, taking into account pointing restriction due to the Sun exclusion angle (120°), occultation by the Earth for an orbital altitude of 800 km, a stray light exclusion angle of 35°, and requiring that CHEOPS is able to observe for at least 50 min during each orbit.

White regions cannot be observed due to the Sun, while orange regions can be observed for 2000+ hours per years.

Targets	Mass limit (M _∞)	Mag limit (<i>V</i>)	# Targets	Symbol in Errore. L'origine riferimento non è stata trovata.
Super-Earths & Neptunes detected by RV surveys	< 30	< 9	62 known	•
Neptunes detected	< 60	< 12	2 known	
by ground-based TR surveys			60 simulated	- -
Planets detected by RV surveys around M dwarfs	< 30	< 13	18 known	•
Hot Jupiters detected by RV surveys around bright stars	> 30	< 9	54 known	٠

CHEOPS MANAGEMENT

CHEOPS Organization

CHEOPS-IT Contributions

- Science
- Telescope (from optical design to AIV)
- ASDC as data archive mirror (tbc)

CHEOPS in Italy

- 5 INAF structures
 - OACT (S, P)
 - OAPD (S, P)
 - OAPA (S)
 - OAT (S)
 - FGG (S)
- Dip. Fis. e Astron. UNIPD (S)
- ASI

►

►

►

ASDC (GS)

CHEOPS Instrument System

CHEOPS Product Tree

CHEOPS Telescope WBS

CHEOPS Milestones

Phase or Review	Instrument	Platform
PRR	3.06.2013	
SRR	15-16.10.2013	14.2.2014 (TEB completed)
Mission adoption	Feb 2013	
PDR	31.03.2014	14.07.2014
CDR	19.11.2014	12.12.2014
Instr. EM available at PF	01.05.2015	
IAR	26.08.2016	14.09.2016 (pf at RUAG)
CHEOPS S/C QAR		24.03.2017
System margin	6 months	
Launch		19.12.2017

CHEOPS TELESCOPE

Platform

- Attitude Control
 - 3-axis stabilized S/C one side facing Earth
 - pointing accuracy < 8 arc sec rms for 10h
- Instrument Power
 - 50 W continuous power,
 - 70 W peak
- Data rate
 - I Gbit/day downlink
- Total mass with payload
 - 200 kg

DISCLAIMER

- The following is just an outline of the expected workload and boundary conditions of the Contract ASI will assign in the CHEOPS framework;
- All the following information are provisional and indicative;
- The detailed work description, its limits, and the responsibilities associated, will be available within the Call for Tender.

Collimator – Camera Design

S-FPL51 N-KZFS11

S-FPL51 N-KZFS11

	Radius of curvature		Thickness	Lens diameter	Glasses	
		(mm)	(mm)	(mm)		
telescope FP			38,34			
Col lens 1	s1	31,51	15,00	10	S-FPL51	
	s2	-16,12	0,94	10		
Col lens 2	s1	-14,98	14,99	10	N-KZFS11	
	s2	-33,81	45,82	10		
Int. pupil			88,85			
cam lens 1	s1	47,21	10,00	14	S-FPL51	
	s2	-30,68	1,33	14		
cam lens 2	s1	-29,11	9,79	14	N-KZFS11	
	s2	-95,47	73,36	14		
FP						

D

INAF

Defocused PSFs approach Performances

A displacement of about 3.5 mm with respect to the nominal focal plane has been applied in order to obtain an on-axis defocused PSF having diameter of about 30 arcsec (30 pixels) for flat spectrum (400-1100nm, sampling 100nm).

- Demonstration Model (DM)
 - Why: used to test TEL integration, alignment and verification (no cryo-vacuum) procedures
 - When: starting from 2nd half of 2014
 - **Input:** mechanical structure from UBE. Equivalent to STM, but made with different material (CTE), i.e. thermally not equivalent.
 - Where: INAF-OAPD
 - Other use: testing integration and alignment procedures for TEL +FPA
 - Where: UBE
- GSE for DM reused for TEL PFM integration, alignment, and verification.

(cf. CHEOPS-INAF-MA-MIN-004)

- To find and validate an alignment procedure giving a system compliant with requirements and tolerances
 - TEL optics to Optical Bench (OB) alignment:
 - 500 µm
 - 400 µrad
 - TEL optics internal alignment:
 - Optical quality (still TBD)
- Opto-mechanical interfaces verifications
- Identify tools useful for the AIV and verify no interferences arise

DM CONCEPT

- At the moment the optical design is made in a way that:
 - The telescope mirrors relative alignment can be optimized (also in focus) separately from the Back-End Optics.
 - The BEO can be internally aligned separately too.

Ritchey-Chrétien internal alignment

- A bearing rotation axis is set as a reference: the TEL optical bench is mechanically aligned wrt the bearing with a dial gauge.
- The TEL mirrors are aligned one with respect to the other and to the rotation axis of the bearing.

• VERIFICATION:

the TEL is fed with a beam realized with:

- Zygo interferometer
- Beam expander
- Flat mirror on a 45° adjustable mount to explore the TEL FoV

GOALS:

- focused image
- symmetric quality on the FoV
- center of symm.:
 bearing rotation
 axis (reference is
 on a test camera)

- The CIS optical design is intended to produce a relatively wide point spread function at the detector plane. The width of the PSF is a trade-off between reducing the noise in the stellar image (pushing to large PSFs) and the increased susceptibility to straylight, which a larger stellar image generates.
- The optics must also provide a sufficiently small instantaneous field of view (IFOV) to limit contamination of the signal through background/ adjacent stellar sources. It should be noted that the PSF should ideally be a top hat function.

- The CIS optical design is intended to produce a relatively wide point spread function at the detector plane. The width of the PSF is a trade-off between reducing the noise in the stellar image (pushing to large PSFs) and the increased susceptibility to straylight, which a large sophysticated image generates.
 The optics much to decide about the simplest vs. sophysticated instant using a roadmap to decide about the simplest vs.
 - The optics much a roadmap to decide within the psr uniform, and the psr uniform, adjace by the psr uniform, a top hat function.

- The optics are mounted in a structure of carbonfibre reinforced polymer, which is used to reduce the susceptibility of the instrument to thermal variations which might be significant in near-Earth orbit.
- We are targeting an operational temperature of 250 K for the telescope structure.
- The change in distance between the primary and secondary mirrors (the parameter with the largest impact) should be within the ±<10 µm needed if the PSF is to be maintained constant to an appropriate level.

- The optics are mounted in a structure of carbonfibre reinforced polymer, which is used to reduce the susceptibility of the instrument to thermal variations which might be significant in near-Earth orbit.
- We are targeting an op
 250 K for the telescope
- The change in distance listence listence is secondary mirrors (the pinning impact) should be within the PSF is to be maintaine appropriate level.

- Straylight is potentially a major noise source and hence the telescope must be baffled to reduce straylight (primarily from the Earth). The instrument baffling takes account of the rotation of the spacecraft, which maintains the Earth to one side of the spacecraft at all times. Concerns over cleanliness and contamination lead to introduction of a door cover (which is light and dust tight).
- The temperature stability of both the focal plane assembly and the electronics (to stabilize the system gain) must be maintained to a level of ~10 mK.

 Straylight is potentially a major noise source and hence the telescope must be baffled to reduce straylight (primarily from the Internal tube External baffle instrument b Diameter 360 mm Diameter 546.29 mm External tube Diameter 380 mm the spacecraf side of the sp 02 03 dose 38087,46 Rads 7102,098 Rads No FP baffle 100 mm FP baffle 0.044418 sr 3 MRads Ω^1 0.074167 sr 6,816835 deg Ω^2 0,203958 sr 8,81214 deg 03 14,63862 deg mained to a level of ~10

- Great care is given to assess Interfaces where responsibilities can be clearly assigned.
- Ex.: Primary Mirror mounting:

- Great care is given to assess Interfaces where responsibilities can be clearly assigned.
- Ex.: Primary Mirror mounting:

- Great care is given to assess Interfaces where responsibilities can be clearly assigned.
- Ex.: Primary Mirror mounting:

ter Super Invar 32-5 (TBC)

ASSY

Zerodur (TBC)

- Great care is given to assess Interfaces where responsibilities can be clearly assigned.
- Ex.: Primary Mirror mounting:

Ttile:CHEOPS-CIS Mass BudgetReview:SRRDate:18.09.2013Author:R. Buxton

Mass budget

Level	Name	Responsible	Basic Mass [kg]	Unit Margin [%]	Nominal Mass [kg]	Requirement [kg] / [%]	Reference	Remark
CIS	CHEOPS Instrument Assembly	UBE	39.680	20%	47.616	<50.0		<50kg design goal
	System Margin				9.523	20%		In accordance with EID-A MID-090 for SRR
				Total CIS Mass with System Margin	57.139	<60.0		In accordance with EID-A MID-100
Level	Name	Responsible	Basic Mass [kg]	Unit Margin [%]	Nominal Mass [kg]	Requirement [kg]	Reference	Remark
CIS	CHEOPS Units	UBE	38.980	20%	46.776		Unit Mass Breakdowns (below)	Does not include STOH mass
	Shielding (Inc. Unit level)	UBE	0.200	20%	0.240		UBE estimate	In accordance with EID-A MID-040
	Instrument Harness to Platform	UBE	0.500	20%	0.600		UBE estimate	
		Total CIS Mass w/o Unit Margins	39.680	Total CIS Mass with Unit Margins	47.616	<50.0		
Level	Name	Responsible	Basic Mass	Unit Margin	Nominal Mass	Requirement	Reference	Remark
UNIT		UBE/INAF/TBC/	[kg] 21.216	[%]	[kg] 25.459	[kg] <28.0	OTA Unit Mass Breakdown	
	(STRUCT-TEL-FPA-RADS)	CSI	12 434	20%	14 921	<15.0	CHEOPS-CSI-BCA-DD-001-lcsue1	
		0.0	12.101	20%	0.000	<10.0	Email: AW: CHEOPS SEM Mass Breakdown,	
	SEM (CSU-PCU)	DLR	2.32	20%	2.900	<3.0	Gisbert Peter, 17.09.2013	Maximum design mass inc. uncertainties
	BEE	KON/IWF	3.01	20% Total LINIT Masses	3.612	12 <4.0 203-0040-Issue-B		
		w/o Unit Margin	38.980	with Unit Margin	46.776	<50.0		
Level	Name	Responsible	Basic Mass	Unit Margin	Nominal Mass	Requirement	Reference	Remark
OTA Unit	STRUCT, Supplier	Supplier TBC	8.525	20%	10.231	<11.0	CHEOPS-INT-BUDGET-MASS-260813.xls	Components procured externally under UBE supervision
	STRUCT, UBE Interfaces	UBE	2.553	20%	3.064	<4.0	CHEOPS-INT-BUDGET-MASS-260813.xls	See below
	TEL Optics	INAF	4.254	20%	5.105	<6.0	CHEOPS-CIS_Optics_Mass_Budget.xls	M1/M2, Folding Mirror, Camera Lens, Colimator Lens
	RADIATORS	ADM	3.383	20%	4.060	<4.0	CHEOPS-INT-BUDGET-MASS-260813.xls	Descrepancy with ADM Design Report, missing straps/brackets
	FPA (CCD/FEE)	DLR/ESA	2.000	20%	2.400	<2.4	CHEOPS-DLR-INST-DD-001	Incorrect Unit margin philosphy for PCU (30%)
	OTA Thermal H/W	UBE	0.500	20%	0.600	<0.6	CHEOPS-INT-BUDGET-MASS-260813.xls	MLI, Heaters
		Total OTA Mass w/o Unit Margin	21.216	Total OTA Mass with Unit Margin	25.459	<27.4		
Level	Name	Responsible	Basic Mass	Unit Margin	Nominal Mass	Requirement	Reference	Remark
STRUCT, Supplier	Optical Train	Supplier TBC	3.945	20%	4.734	<5.2	203-1000-Issue-A	Excluding TEL Optics/Mounts and BEO Housing
	Support Structure	Supplier TBC	4.400	20%	5.280	<5.6	203-1620-Issue-A	Includes all 3 Bipods
	Misc (bolts, shims, washers etc)	Supplier TBC	0.181	20%	0.217	<0.2	203-0020-Issue-A	At OTA Assey level (lower levels accounted for)
		Total Mass w/o Unit Margin	8.525	Total Mass with Unit Margin	10.231	<11.0		
Level	Name	Responsible	Basic Mass	Unit Margin	Nominal Mass	Requirement	Reference	Remark
STRUCT,	Optics I/F Mounts	UBE	[kg] 0.874	20%	[kg] 1.049	[kg] <1.2	CHEOPS-INT-BUDGET-MASS-260813.xls	
Interfaces	BEO Housing	UBE	0.350	20%	0.420	<0.5	CHEOPS-INT-BUDGET-MASS-260813.xls	
	Radiator Support Assembly	UBE	1.329	20%	1.595	<2.0	CHEOPS-INT-BUDGET-MASS-260813.xls	Includes Optics Hood
		Total Mass	2.553	Total Mass with Unit Margin	3.064	<4.0		

OTA mass budget

Level	Name	Responsible	Basic Mass [kg]	Unit Margin [%]	Nominal Mass [kg]	Requirement [kg]
OTA Unit	STRUCT, Supplier	Supplier TBC	8.525	20%	10.231	<11.0
	STRUCT, UBE Interfaces	UBE	2.553	20%	3.064	<4.0
	TEL Optics	INAF	4.254	20%	5.105	<6.0
	RADIATORS	ADM	3.383	20%	4.060	<4.0
	FPA (CCD/FEE)	DLR/ESA	2.000	20%	2.400	<2.4
	OTA Thermal H/W	UBE	0.500	20%	0.600	<0.6
		Total OTA Mass w/o Unit Margin	21.216	Total OTA Mass with Unit Margin	25.459	<27.4

Schedule

Schedule

COPS PS Attro-asics Weyse Dws Dage Activities in Italy Meetings Italian Ton

Calendar

 \gg

+

IPa T

Utilities ▼

CHEOPS in Italy

TWIKI

Science Objectives Activities in Italy

Photo Gallery

CHEOPS (CHaracterizing ExOPlanet Satellite)

has been proposed as an S-class mission in response to the call for Proposals issued by ESA in March 2012.

It has been selected by ESA as the first S-class mission in Cosmic Vision 2015-2025 for a launch in 2017.

CHEOPS primary goal is characterizing transiting exoplanets on known bright and nearby host stars.

Italy is one of the partners of the Consortium developing the CHEOPS satellite. CHEOPS in Italy is made by the collaborative efforts of INAF, UniPD, and ASI. This is the web site of the CHEOPS Italian Team.

Other websites

 CHEOPS at ESA CHEOPS at Bern University

CHEOPS at a Glance

000

<

+

60 Google Traduttore

www.oact.inaf.it/cheops-it/Home.html

Radio

Home

CHEOPS (CHaracterizing ExOPlanet Satellite) has been proposed as an S-class mission in response to the call for Proposals issued by ESA in March 2012. It has been selected by ESA as the first S-class mission in Cosmic Vision 2015-2025. Formal adoption of the mission is expected in early 2014, with launch planned for 2017.

The CHEOPS mission is a joint ESA-Switzerland project, with important contribution from Italy and a number of other ESA Member States, cooperating within a dedicated Mission Consortium.