

WORKSHOP

TECNOLOGIE E NUOVI CONCETTI DI MISSIONE PER NANO-SATELLITI E CUBESAT: OPPORTUNITA', IDEE E POTENZIALITA'

Sala AUDITORIUM - AGENZIA SPAZIALE ITALIANA 4-5-6 MARZO 2020

AGENDA PRELIMINARE

OVERVIEW SESSIONI

		Sala AUDITORIUM			Sala ESPOSIZIONE			Sala STAMPA la FORMAZIONE
Giorno #1 04/03/2020	8:30 9:30 11:30 13:30 15:00 17:00	9:30 Registrazione 11:30 Sessione IA: introduzione 13:30 Sessione I.B 15:00 PRANZO 17:00 Sessione I.C 18:30 Sessione I.D	15:00	18:30	Sessione poster ed esposizione tecnologica	15:00	18:30	Incontri B2B
	18:30 8:00	18:40 Conclusioni 9:00 Registrazione						
Giorno #2 05/03/2020	9:00 11:00 13:30 15:00 17:00 18:30	11:00 Sessione II.A 13:30 Sessione II.B 15:00 PRANZO 17:00 Sessione II.C 18:30 Sessione II.D 18:40 Conclusioni	9:00	18:30	Sessione poster ed esposizione tecnologica	9:00	18:30	Incontri B2B
	8:00	9:00 Registrazione						
Giorno #3	9:00 11:00 13:30	11:00 Sessione III.A 13:30 Sessione III.B 15:00 PRANZO	09.00	15:00	Sessione poster ed esposizione tecnologica	09.00	15:00	Incontri B2B
06/03/2020	15:00 16:30 17:30	16:30 Sessione III.C 17:30 Tavola Rotonda 18:00 Chiusura workshop						

04 Marzo 2020 - Sala AUDITORIUM

h. 9:30 – 11:30	Sessione I.A	Sessione I.A - Introduzione
Formaro	ASI	
Saccoccia	ASI	
Walker	ESA	
Intervent	ti istituzionali	

h. 11:30 – 13:30	Sessione I.B	Interventi di 15' ciascuno
Rocca	Politecnico di Milano	Formazioni sparse di minisatelliti SAR MIMO
Renga	Università degli Studi di Napoli "Federico II"	Precursore di un distributed SAR: utilizzo innovativo di una formazione di cubesat
Fineschi	INAF	CubeSat Missions for Space Weather Monitoring
Topputo	Politecnico di Milano	CubeSat interplanetari: Attività in corso al Politecnico di Milano
Feruglio	AIKO	Il futuro dell'automazione di missioni di piccoli satelliti
Antonetti	D-ORBIT	InOrbitNOW - Servizi di Trasporto Spaziale per Nano-Satelliti e CubeSat
La Regina	Nanoracks Space Outpost Europe s.r.l.	I fattori abilitanti l'accesso allo Spazio per i piccoli satelliti
	Q&A	15 min

h. 15:00 – 17:00	Sessione I.C	Interventi di 15' ciascuno
Fiore	INAF	The HERMES-Technologic and Scientific Pathfinder
Santoni	Università degli Studi di Roma " La Sapienza"	Nanosatelliti per la sperimentazione sulla crescita delle piante in orbita: la missione GREENCUBE
Brucato	INAF	ABCS: a CubeSat for space environment astrobiology experiments
Berrilli	Università degli Studi di Roma "Tor Vergata"	The uV activE suN saTellite (VENT): a 6U CubeSat mission
Votta	CIRA	LEILA- Piccola Missione in Orbita Polare Terrestre per lo Studio di Ambienti Caratteristici di Viaggi Interplanetari
Luchena	ARCA Dynamics	Alpha - IOD mission
Parissenti	GP Advanced Projects	FEES (Flexible Experimental Embedded Satellite)
	Q&A	15 min

h. 17:00 – 18:15	Sessione III.C	Interventi di 15' ciascuno
Cuccoli	CNIT	Il progetto SATCROSS: Satelliti corotanti per la stima di vapore acqueo in
		troposfera
Di Salvo	NEXT Ingegneria dei Sistemi	NCS - Nanosatellite Control Segment
Monsorno	EURAC Research	Eurac Ground Segment - tecnologie ed esperienza per comunicazioni satellitari
Santoro	ALTEC s.p.a.	ALTEC come centro europeo di riferimento per i servizi i di terra dedicati ai nano
Santoro		e micro satelliti
Down and in i	British Interplanetary	O Cuba Educational Catallita
Bernardini	Society	Q-Cube Educational Satellite
	Q&A	15 min

05 Marzo 2020 - Sala AUDITORIUM

h. 09:00 – 11:00	Sessione II.A	Interventi di 15' ciascuno
Maresi	ESA	Optical Payloads for Small Satellites, challenges and opportunities
Bianucci	Media Lario s.r.l.	High Precision Optics and Optical Systems for Nanosatellites
Bucciol	Officina Stellare	Officina Stellare Space Heritage and the New Space Economy
Francesconi	Stellar Project s.r.l.	LaserCube: an optical communication terminal for small satellites. Development status and perspective applications
Capuano	Tecno System Developments	Electro-Optical Payloads, Data Processing and Integrated Navigation Systems for Nanosatellites
Lualdi	Optec s.p.a.	Progettazione e produzione di optical payload per nano e cubesat al limite della diffrazione
Manzoni	Politecnico di Milano	Imaging iperspettrale con interferometri birifrangenti
	Q&A	15 min

h. 11:00 – 13:30	Sessione II.B	Interventi di 15' ciascuno
Lanzieri	Leonardo Company	GaN technology for Space missions
Cucinella	IMT	IMT activities for nano-satellites
Scortecci	Aerospazio Tecnologie	Compact Electric Propulsion System for Cube and Mini-Sats Applications
Pavarin	T4i	REGULUS electrical propulsion system for CubeSats mobility
Zambelli	Due2lab s.r.l.	A CdZnTe 3D Imaging Spectrometer with Digital Readout prototype for High Energy Astronomy
Cassettari	IngeniArs s.p.a.	IngeniArs: le nostre soluzioni applicabili al mondo dei CubeSat e Nanosatelliti
Andreoli	Università degli studi di Ferrara	Anodi in germanio nanoporoso per batterie agli ioni di litio per applicazioni aerospaziali
Pagnani	Cistelaier s.p.a.	Analisi, riduzione rischio e metodologie di qualifica del prodotto per nano- satelliti
Camonita	ST Microelectronics	Power Discete Transistors for Space
	Q&A	15 min

15:00 - 17:00	Sessione II.C	Interventi di 15' ciascuno
Lavagna	Politecnico di Milano	Sviluppo di tecnologie abilitanti per missioni ad alte prestazioni basate su nanosatelliti presso il Politecnico di Milano
Modenini	Università degli Studi	Determinazione orbitale ed esperimenti di radio scienza con CubeSat oltre
Wiodeliili	di Bologna	l'orbita terrestre: l'approccio dell'Università di Bologna.
Bogoni	Scuola Superiore	Progetti spazio del centro di tecnologie fotoniche di CNIT e Scuola Superiore
водон	Sant'Anna Pisa	Sant'Anna
Corpino, Dovis	Politecnico di Torino	CubeSats missions @ PoliTo: technologies and applications
Agnesi	Università degli Studi	Sistemi miniaturizzati e spazializzabili per la distribuzione di chiave quantistica
Agriesi	di Padova	Sisteriii miinaturizzati e spazializzabili per la distribuzione di ciliave quantistica
Marcuccio	Università di Pisa	II programma MicroPowerSat dell'Università di Pisa
Mengali	Consorzio CREO	Superfici avanzate e smart per controllo termico di satelliti
Dell'Aversana	Lead Tech	Strutture Multistabili in Additive Manufacturing: Applicazioni Spaziali
Donati	Kayser Italia	A deployable mechanism for nanosatellites
	Q&A	15 min

h. 17:00 – 18:30	Sessione II.C	Interventi di 15' ciascuno
Nicolai	Ordine degli	ARAMIS – Cubesat Constellation for IoT/ELINT Missions with Q and Ka Band ISL
MICOIdi	Ingegneri di Roma	ARAIVIIS — Cubesat Constellation for 101/ELIN1 Wilssions with Q and Ra Band ISE
Anconitano	Sapienza Università	Design of a space mission based on an innovative approach to detect ULF signals
Anconitano	di Roma	at the onset of major earthquakes
Battaglia	Politecnico di Torino	The HailCube mission
Pierdicca	Sapienza Università	The HydroGNSS candidate ESA Scout mission
rieraicca	di Roma	
Ciaramella	Università degli Studi	Sistemi VLC per cubesat
Ciaramena	di Pisa	Sisterni VEC per cubesat
	Q&A	15 min

06 Marzo 2020 – Sala AUDITORIUM

h. 9:00 – 11.00	Sessione III.A	Interventi di 15' ciascuno
Marini	Thales Alenia Space Italia	Soluzioni e trend tecnologici applicabili ai nanosatelliti
Ficcadenti	CESI s.p.a.	Prodotti e Attività CESI per lo spazio
Gregorio	Università degli Studi di Trieste	RADIOSAT: a miniaturised Ka band transceiver
Zummo	In Quattro s.r.l.	Two-Phase Cooling: An Innovative Thermal Management System for Space Applications
Curti	Università degli Studi di Roma " La Sapienza"	Recognition of orbiting-objects using nanosatellites with star sensors
Trematerra	Thales Alenia Space Italia	GNSS Reflectometry and AI through nanosatellites
Borri	Cloud Constellation Corporation	SpaceBelt: leading the cloud transformation of Space
	Q&A	15 min

11:00 - 13:30	Sessione III.B	Interventi di 15' ciascuno
Fortezza	Telespazio	U-DRAGON: UNIFIED - DISTRIBUTED ADVANCED GLOBAL OPERATIVE NETWORK
FOITEZZa	Telespazio	FOR NANO AND MICRO SATELLITE OPERATIONS
Fortunato	Planetek Italia s.r.l.	Space Data Gateway , a smart NanoSat communication service in LEO
Brighenti	SATE s.r.l.	CASTeC - Context aware spacecraft telemetry checking
Fanucci	Università degli Studi	CLOUDSCOUT: on-board artificial intelligence for cloud detection in micro and
ranucci	di Pisa	nano earth observation satellites
Fiorini	Università degli Studi	Robot autonomi: tecnologie e verifiche sperimentali
	di Verona	nosot autonomic technologie e vermone sperimentan
Cassano	Politecnico di Milano	Progetto ed analisi di applicazioni di elaborazione di immagini basate su deep
Cassario		learning tolleranti ai guasti
Bozzano	Fondazione Bruno	Metodi formali per il design e la verifica di sistemi aerospaziali
DUZZdIIU	Kessler	ivietoui forman per n design e la vernica di sistemi del ospazian
	Q&A	15 min

h. 15:00 – 16:15	Sessione I.D	Interventi di 15' ciascuno
Intelisano	Thales Alenia Space Italia	La visione di Thales Alenia Space dell'impiego dei nanosatelliti nelle missioni spaziali
Contini	OHB Italia s.p.a.	A-MiSAT: Advanced Micro-Satellite for Multi Mission purposes
Molina	SITAEL	Tecnologie SITAEL per nanosatelliti
Di Tana	Argotec	Tecnologie e innovazione in ambito CubeSat: progetti e prospettive della ricerca e sviluppo di Argotec
Cardi	Tyvak International	Trend tecnologici and future missions
	Q&A	15 min

h. 16:15 – 18:00	Sessione III.D	
Moderatore: ASI		TAVOLA ROTONDA
Formaro	ASI	Conclusioni e saluti

LISTA DEI POSTER (Sala Esposizione)

- 1. Adaa/ALSAT
- 2. Aerospazio Tecnologie
- 3. Azienda Italspazio Srl
- 4. British Interplanetary Society
- 5. Centro Italiano Ricerche Aerospaziali
- 6. Cistelaier
- 7. CNR-IFN, Politecnico di Milano
- 8. D-ORBIT
- 9. Due2lab srl
- 10. ENEA
- 11. GP Advanced Projects srl
- 12. HB Technology srl
- 13. INAF Osservatorio Astrofisico di Arcetri
- 14. INAF/IAPS
- 15. INAF-OAS, Bologna
- INNOVA Consorzio per l'Informatica e la Telematica s.r.l.
- 17. Istituto Italiano di Tecnologia
- 18. Nanoracks Space Outpost Europe srl
- 19. OHB ITALIA SPA
- 20. Optec spa
- 21. Planetek italia s.r.l.
- 22. PLD Space
- 23. Politecnico di Milano
- 24. PROESYS srl
- 25. RINA
- 26. S.A.T.E. s.r.l.
- 27. Scuola di Ingegneria Aerospaziale Università La Sapienza di Roma
- 28. Scuola Superiore Sant'Anna
- 29. Stellar Project srl
- 30. Thales Alenia Space Italia
- 31. Tyvak International Srl
- 32. Università degli Studi di Napoli "Federico II"
- Università degli Studi di Roma "Tor Vergata" (MECSA)
- 34. Università degli Studi di Roma "Tor Vergata" (Perosky)
- 35. Università di Bologna
- 36. Università di Ferrara
- 37. Università di Padova
- 38. Università di Pisa (CloudScout)
- 39. Università di Pisa (FEEP)
- 40. Università di Verona (Robotica)
- 41. Università di Verona (ALTAIR)
- 42. University of Oslo

LISTA DEGLI ESPOSITORI HW (Sala Esposizione)

- 1. AIKO
- 2. Argotec Srl
- 3. Azienda Italspazio srl
- 4. BBZ srl
- 5. British Interplanetary Society
- 6. CESI SpA
- 7. CNR-IFN, Politecnico di Milano
- 8. Connex Italiana srl
- 9. D-ORBIT
- 10. Due2lab srl
- 11. GAUSS srl
- 12. GP Advanced Projects srl
- 13. HB Technology srl
- 14. IMT srl
- 15. In Quattro srl
- 16. Ing. Talarico
- 17. IngeniArs srl
- 18. INNOVA Consorzio per l'Informatica e la Telematica s.r.l.
- 19. Npc spacemind
- 20. Officina Stellare SpA
- 21. Optec spa
- 22. Planetek Italia srl
- 23. Politecnico di Milano
- 24. PROESYS srl
- 25. S.A.T.E. srl
- 26. Scuola Superiore Sant'Anna
- 27. STMicroelectronics
- 28. T4i
- 29. Thales Alenia Space Italia
- 30. Techno System Developments
- 31. Tyvak International Srl
- 32. Universita' Trieste PICOSATS
- 33. University of Pisa Dipartimento Ingegneria dell'Informazione